[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Relational Model Based Annotation of the Web Data

  • Conference paper
Advances in Intelligent Web Mastering

Part of the book series: Advances in Soft Computing ((AINSC,volume 43))

  • 680 Accesses

Abstract

In this paper, we present a fast and scalable Bayesian model for improving weakly annotated data – which is typically generated by a (semi) automated information extraction (IE) system from Web documents. Weakly annotated data suffers from incorrect ontological role assignments. Our experimental evaluations with the TAP and a collection of 20,000 home pages from university, shopping and sports Web sites, indicate that the model described here can improve the accuracy of role assignments from 40% to 85% for template driven sites, from 68% to 87% for non-template driven sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: ACM SIGMOD, Washington, D.C., pp. 207–216. ACM Press, New York (1993), citeseer.ist.psu.edu/agrawal93mining.html

    Google Scholar 

  2. Alpaydin, E.: Introduction to Machine Learning, pp. 39–59. MIT Press, Cambridge (2004)

    Google Scholar 

  3. Chickering, D.M.: Learning bayesian networks is NP-complete. In: Learning from Data: Artificial Intelligence and Statistics V (1996)

    Google Scholar 

  4. Crescenzi, V., Mecca, G.: Automatic information extraction from large web sites. Journal of ACM 51(5), 731–779 (2004)

    Article  MathSciNet  Google Scholar 

  5. Dill, S., et al.: A case for automated large-scale semantic annotation. Journal of Web Semantics 1(1), 115–132 (2003)

    Google Scholar 

  6. Friedman, N., et al.: Learning probabilistic relational models. In: IJCAI, pp. 1300–1309 (1999), citeseer.ist.psu.edu/friedman99learning.html

  7. Gelgi, F., Vadrevu, S., Davulcu, H.: Automatic extraction of relational models from the web data. Technical Report ASU-CSE-TR-06-009, Arizona State University (April 2006)

    Google Scholar 

  8. Guha, R., McCool, R.: TAP: A semantic web toolkit. Semantic Web Journal (2003)

    Google Scholar 

  9. Murphy, K.: A brief intro. to graphical models and bayesian networks (1998)

    Google Scholar 

  10. Vadrevu, S., Gelgi, F., Davulcu, H.: Semantic partitioning of web pages. In: WISE, New York, NY, USA, pp. 107–118 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Katarzyna M. Wegrzyn-Wolska Piotr S. Szczepaniak

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gelgi, F., Vadrevu, S., Davulcu, H. (2007). Relational Model Based Annotation of the Web Data. In: Wegrzyn-Wolska, K.M., Szczepaniak, P.S. (eds) Advances in Intelligent Web Mastering. Advances in Soft Computing, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72575-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72575-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72574-9

  • Online ISBN: 978-3-540-72575-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics