[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Granulations Based on Semantics of Rough Logical Formulas and Its Reasoning

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4482))

Abstract

In this article, the granulation based on the meaning of rough logical formula in a given information system IS = (U,A) is proposed. Which is considered the granular formulas of form m(F), where F is a rough logical formula on IS. Relative properties of the granulations are discussed. Deductive reasoning of the granulations and λ-granular resolution strategies are also studied in this article. The practicability of the granulations will offer the new idea for studying meaning of classical logic and the meaning of other nonstandard logic. It could also be a theoretical development for granular computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough Sets. Int. J. Inform. Comp. Sci. 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pawlak, Z.: Rough Sets present State and Further Prospects. In: Proceedings of Third International Workshop on Rough Sets and Soft Computing, Nov. 10-12,1994, pp. 72–76 (1994)

    Google Scholar 

  3. Lin, T.Y.: A Roadmap from Rough Set Theory to Granular Computing. In: Wang, G.-Y., et al. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Lin, T.Y.: Granular Computing on Partitions, Coverings and Neighborhood Systems, The proceedings of International Forum on Theory of GrC from Rough Set Perspective (IFTGrCRSP2006). Journal of Nanchang Institute of Technology 25(2), 1–7 (2006)

    MathSciNet  Google Scholar 

  5. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    Book  MATH  Google Scholar 

  6. Skowron, A.: Rough Sets in KDD, Special invited Speaking. In: WCC 2000, Beijing (Aug. 2000)

    Google Scholar 

  7. Skowron, A., Stepaniuk, J., Peters, J.F.: Extracting patterns using information granules. In: Proceedings of International Workshop on Rough Set Theory and Granular Computing, Japan, pp. 135–142 (2001)

    Google Scholar 

  8. Skowron, A., Swiniarski, R.: Information granulation and pattern recognition. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough Neurocomputing: Techniques for Computing with Words, Cognitive Technologies, Springer, Berlin (2003)

    Google Scholar 

  9. Lin, T.Y.: Granular computing on binary relations I: Data mining and neighborhood systems. In: Skowron, A., Polkowski, L. (eds.) Rough Sets in Knowledge Discovery, pp. 107–121. Physica-Verlag, Berlin (1998)

    Google Scholar 

  10. Lin, T.Y.: Granular computing on binary relations II: Rough set representations and belief functions. In: Skowron, A., Polkowski, L. (eds.) Rough Sets in Knowledge Discovery, pp. 113–124. Physica-Verlag, Berlin (2000)

    Google Scholar 

  11. Skowron, A.: Synthesis of Adaptive Decision Systems from Experimental Data. In: Aamodi, A., Komorowski, J. (eds.) Proc. Of the Fifth Scandinavian Conference on Artificial Intelligence (SCAI) 95, Trondheim, Norway, pp. 220–238. IOS Press, Amsterdam (1995)

    Google Scholar 

  12. Liu, Q.: Rough Sets and Rough Reasoning (in Chinese), 3rd edn. Science Press, Beijing (2005)

    Google Scholar 

  13. Yao, Y.Y.: Information granulation and rough set approximation. International Journal of Intelligence Systems 16, 87–104 (2001)

    Article  MATH  Google Scholar 

  14. Yao, Y.Y., Yao, J.T.: Induction of Classification Rules by Granular Computing. In: Alpigini, J.J., et al. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 331–338. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Liu, Q., Jiang, F., Deng, D.Y.: Design and Implement for the Diagnosis Software of Blood Viscosity Syndrome Based on Hemorheology on GrC. In: Wang, G., et al. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 413–420. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Lin, T.Y.: From rough sets and neighborhood systems to information granulation and computing in Words. In: Proceedings of European Congress on Intelligent Techniques and Soft Computing, pp. 1602–1606 (1997)

    Google Scholar 

  17. Skowron, A.: Rough-Granular Computing, The proceedings of International Forum on Theory of GrC from Rough Set Perspective (IFTGrCRSP2006). Journal of Nanchang Institute of Technology 25(2), 8–14 (2006)

    Google Scholar 

  18. Yao, Y.Y.: Three Prospectives of Granular Computing, The proceedings of International Forum on Theory of GrC from Rough Set Perspective (IFTGrCRSP2006). Journal of Nanchang Institute of Technology 25(2), 16–21 (2006)

    Google Scholar 

  19. Liu, Q., Liu, S.H., Zheng, F.: Rough Logic and Applications in Data Reduction (In Chinese). Journal of Software 12(3) (2001)

    Google Scholar 

  20. Pawlak, Z.: Rough Logic. Bulletin of the Polish Academy of Sciences, Technical Sciences 35(5-6), 253–259 (1987)

    MathSciNet  MATH  Google Scholar 

  21. Orlowska, E.: A Logic of Indiscernibility Relation. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 177–186. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  22. Orlowska, E.: Logic of Nondeterministic Information. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 469–473. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  23. Skowron, A.: Toward Intelligent Systems: Calculi of Information Granules. Bulletin of International Rough Set Society 5(1-2), 9–30 (2001)

    MATH  Google Scholar 

  24. Liu, Q., Wang, Q.Y.: Granular Logic with Closeness Relation and Its Reasoning. In: Ślęzak, D., et al. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 709–711. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Liu, Q., Huang, Z.H.: G-Logic and Its Resolution Reasoning (In Chinese). Chinese Journal of Computer 27(7), 865–873 (2004)

    MathSciNet  Google Scholar 

  26. Liu, Q.: Granular Language and Its Reasoning. In: Data Mining and Knowledge Discovery: Theory, Tools, and Technology V, Proceeding of SPIE-The International Society for Optical Engineering, Orlando, Florida, USA, 21-22 April 2003, pp. 279–287 (2003)

    Google Scholar 

  27. Lin, T.Y., Liu, Q.: First order rough logic I: Approximate reasoning via rough sets. Fundamenta Informaticae 27(2-3), 137–153 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Yao, Y.Y., Liu, Q.: A Generalized Decision Logic in Interval-Set-Valued Information table. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 285–294. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  29. Chang, C.L., Lee, R.C.T.: Symbolic Logic and Machine Theorem Proving. Academic Press, New York (1993)

    Google Scholar 

  30. Liu, Q.: The OI-resolution of operator rough logic. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 432–435. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  31. Liu, X.: Fuzzy Logic and Fuzzy Reasoning (In Chinese). Press. of Jilin University, Jilin (1989)

    Google Scholar 

  32. Liu, Q., Sun, H.: Theoretical Study of Granular Computing. In: Wang, G.-Y., et al. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 93–102. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Q., Sun, H., Wang, Y. (2007). Granulations Based on Semantics of Rough Logical Formulas and Its Reasoning. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2007. Lecture Notes in Computer Science(), vol 4482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72530-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72530-5_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72529-9

  • Online ISBN: 978-3-540-72530-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics