[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Neonatal Infection Diagnosis Using Constructive Induction in Data Mining

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2007)

Abstract

This paper presents the results of our experiments on a data set describing neonatal infection. We used two main tools: the MLEM2 algorithm of rule induction and BeliefSEEKER system for generation of Bayesian nets and rule sets. Both systems are based on rough set theory. Our main objective was to compare the quality of diagnosis of cases from two testing data sets: with an additional attribute called PCT and without this attribute. The PCT attribute was computed using constructive induction. The best results were associated with the rule set induced by the MLEM2 algorithm and testing data set enhanced by constructive induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Booker, L.B., Goldberg, D.E., Holland, J.F.: Classifier systems and genetic algorithms. In: Carbonell, J.G. (ed.) Machine Learning. Paradigms and Methods, pp. 235–282. The MIT Press, Menlo Park (1990)

    Google Scholar 

  2. Grzymala-Busse, J.W.: Knowledge acquisition under uncertainty—A rough set approach. Journal of Intelligent & Robotic Systems 1, 3–16 (1988)

    Article  MathSciNet  Google Scholar 

  3. Grzymala-Busse, J.W.: LERS—A system for learning from examples based on rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, pp. 3–18. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  4. Grzymala-Busse, J.W.: A new version of the rule induction system LERS. Fundamenta Informaticae 31, 27–39 (1997)

    MATH  Google Scholar 

  5. Grzymala-Busse, J.W.: MLEM2: A new algorithm for rule induction from imperfect data. In: Proceedings of the 9th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2002, Annecy, France, July 1–5, 2002, pp. 243–250 (2002)

    Google Scholar 

  6. Grzymala-Busse, J.W., et al.: An approach to imbalanced data sets based on changing rule strength. In: Learning from Imbalanced Data Sets, AAAI Workshop at the 17th Conference on AI, AAAI-2000, Austin, TX, July 30–31, 2000, pp. 69–74 (2000)

    Google Scholar 

  7. Grzymala-Busse, J.W., Hippe, Z.S., Mroczek, T.: Belief rules vs. decision rules: A preliminary appraisal of the problem. In: Intelligent Information Processing and Web Mining. Advances in Soft Computing, pp. 431–435. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Heckerman, D.: A tutorial on learning Bayesian networks. Microsoft Corporation, Technical Report MSR-TR-95-06 (1996)

    Google Scholar 

  9. Hippe, Z.S., Mroczek, T.: Melanoma classification and prediction using belief networks. In: Kurzynski, M., Puchala, E., Wozniak, M. (eds.) Computer Recognition Systems, pp. 337–342. Wroclaw University of Technology Press, Wroclaw (2003)

    Google Scholar 

  10. Holland, J.H., Holyoak, K.J., Nisbett, R.E.: Induction. Processes of Inference, Learning, and Discovery. The MIT Press, Menlo Park (1986)

    Google Scholar 

  11. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  12. Kordek, A., et al.: Umbilical cord blood serum procalcitonin concentration in the diagnosis of early neonatal infection. J. Perinatol. 23, 148–153 (2003)

    Article  Google Scholar 

  13. Meisner, M.: Procalcitonin. A New, Innovative Infection Parameter. Georg Thieme Verlag, Stuttgart (2000)

    Google Scholar 

  14. Mroczek, T., Grzymala-Busse, J.W., Hippe, Z.S.: Rules from belief networks: A Rough Set Approach. In: Tsumoto, S., et al. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 483–487. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Nyamande, K., Lalloo, U.G.: Serum procalcitonin distinguishes CAP due to bacteria, mycobacterium tuberculosis and PJP. Crit. Care Resc. 3, 236–243 (2001)

    Google Scholar 

  16. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  18. Podraza, W., et al.: Rough set methodology in supporting neonatal infection diagnosis. In: Cader, A., et al. (eds.) Artificial Intelligence and Soft Computing, pp. 281–287. Exit (2006)

    Google Scholar 

  19. Stoll, B.J., Gordon, T., Korones, S.B., et al.: Early-onset sepsis in very low birth weight neonates: A report from the National Institute of Child Health and Human Development Neonatal Research Network. J. Pediatr. 129, 72–80 (1996)

    Article  Google Scholar 

  20. Tollner, U.: Early diagnosis of septicaemia in the newborn: clinical studies and sepsis score. Eur. J. Pediatr. 138, 331–337 (1982)

    Article  Google Scholar 

  21. Varmuza, K., et al.: Comparison of consistent and inconsistent models in biomedical domain: A rough set approach to melanoma data. In: Methods of Artificial Intelligence, pp. 323–328. Silesian University of Technology Press, Gliwice (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grzymala-Busse, J.W., Hippe, Z.S., Kordek, A., Mroczek, T., Podraza, W. (2007). Neonatal Infection Diagnosis Using Constructive Induction in Data Mining. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2007. Lecture Notes in Computer Science(), vol 4482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72530-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72530-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72529-9

  • Online ISBN: 978-3-540-72530-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics