[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Retracted Article: A New Cluster Validity Index for Fuzzy Clustering Based on Similarity Measure

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2007)

Abstract

In this paper, first, the main problems of some cluster validity indices when they have been applied to Gustafson and Kessel (GK) clustering approach are review. It is shown that most of these cluster validity indices have serious shortcomings to validate Gustafson Kessel algorithm. Then, a new cluster validity index based on a similarity measure of fuzzy clusters for validation of GK algorithm is presented. This new index is not based on a geometric distance and can determine the degree of correlation of the clusters. Finally, the proposed cluster validity index is tested and validated by using five sets of artificially generated data. The results show that the proposed cluster validity index is more efficient and realistic than the former traditional indices.

This paper has been retracted as a large proportion of its contents were copied from the following paper: “A Cluster Validation Index for GK Cluster Analysis Based on Relative Degree of Sharing” by Young-Il Kim et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  2. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3(3), 370–379 (1995)

    Article  Google Scholar 

  3. Bezdek, J.C.: Numerical taxonomy with fuzzy sets. J. Math. Biol. 1, 57–71 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezdek, J.C.: Cluster validity with fuzzy sets. J. Cybernet. 3, 58–72 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 841–847 (1991)

    Article  Google Scholar 

  6. Fukuyama, Y., Sugeno, M.: A new method of choosing the number of clusters for the fuzzy c-means method. In: Proc. of the Fifth Fuzzy Systems Symposium, pp. 247–250 (1989)

    Google Scholar 

  7. Kwon, S.H.: Cluster validity index for fuzzy clustering. Electron. Lett. 34(22), 2176–2177 (1998)

    Article  Google Scholar 

  8. Rezaee, M.R., Lelieveldt, B.P.F., Reiber, J.H.C.: A new cluster validity index for the fuzzy c-mean. Pattern Recognition Lett. 19, 237–246 (1998)

    Article  MATH  Google Scholar 

  9. Boudraa, A.O.: Dynamic estimation of number of clusters in data sets. Electron. Lett. 35(19), 1606–1607 (1999)

    Article  Google Scholar 

  10. Gustafson, D., Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. In: Proc. IEEE CDC, San Diego, CA, USA, pp. 761–766 (1979)

    Google Scholar 

  11. Lee-Kwang, H., Seong, K.A., Lee, K.M.: Hierarchical partition of non structured concurrent systems. IEEE Trans. Systems Man Cybernet. 27(1), 105–108 (1997)

    Article  Google Scholar 

  12. Shahin, A., Menard, M., Eboueya, M.: Cooperation of fuzzy segmentation operators for correction aliasing phenomenon in 3D color doppler imaging. Artif. Intell. 19(2), 121–154 (2000)

    Article  Google Scholar 

  13. Baduska, R.: Fuzzy Modeling for Control. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  14. Kim, Y.-I., et al.: A cluster validation index for GK cluster analysis based on relative degree of sharing. Information Sciences 168, 225–242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. Systems Man Cybernet. 28(3), 301–315 (1998)

    Article  Google Scholar 

  16. Cross, V.V.: An analysis of fuzzy set aggregators and compatibility measures. Ph.D. dissertation, Wright State Univ. Dayton, OH (1993)

    Google Scholar 

  17. Setnes, M.: Fuzzy rule-base simplification using similarity measures. M.Sc. thesis, Dept. Elect. Eng., Contr. Lab., Delft Univ. Technol. (July 1995)

    Google Scholar 

  18. Dumitrescue, D., Lazzerini, B., Jain, L.C.: Fuzzy Sets and their Application to Clustering and Training. CRC Press, Boca Raton (2000)

    Google Scholar 

  19. Setnes, M., et al.: Similarity Measures in Fuzzy Rule Base Simplification (1998)

    Google Scholar 

  20. Bensaid, A.M., et al.: Validity-guided (Re) Clustering with applications to image segmentation. IEEE Transactions on Fuzzy Systems 4, 112–123 (1996)

    Article  Google Scholar 

  21. Kima, D.W., Lee, K.H., Leeb, D.: On cluster validity index for estimation of the optimal number of fuzzy clusters. Pattern Recognition 37, 2009–2025 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zarandi, M.H.F., Neshat, E., Türkşen, I.B. (2007). Retracted Article: A New Cluster Validity Index for Fuzzy Clustering Based on Similarity Measure. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2007. Lecture Notes in Computer Science(), vol 4482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72530-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72530-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72529-9

  • Online ISBN: 978-3-540-72530-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics