[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evolution of Fuzzy System Models: An Overview and New Directions

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4482))

Abstract

Fuzzy System Models (FSM), as one of the constituents of soft computing methods, are used for mining implicit or unknown knowledge by approximating systems using fuzzy set theory. The undeniable merit of FSM is its inherent ability of dealing with uncertain, imprecise, and incomplete data and still being able to make powerful inferences. This paper provides an overview of FSM techniques with an emphasis on new approaches on improving the prediction performances of system models. A short introduction to soft computing methods is provided and new improvements in FSMs, namely, Improved Fuzzy Functions (IFF) approaches is reviewed. IFF techniques are an alternate representation and reasoning schema to Fuzzy Rule Base (FRB) approaches. Advantages of the new improvements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: Fuzzy C-Means Algorithm. Computers and Geoscience 10, 191–203 (1984)

    Article  Google Scholar 

  2. Çelikyilmaz, A., Türkşen, I.B.: Fuzzy Functions with Support Vector Machines. Information Sciences Special Issue, to be published (2007)

    Google Scholar 

  3. Çelikyilmaz, A., Türkşen, I.B.: A New Fuzzy System Modeling Approach with Improved Fuzzy Clustering Algorithm. IEEE Trans. on Fuzzy Systems, under review (2006)

    Google Scholar 

  4. Demirci, M.: Fuzzy functions and their fundamental properties. Fuzzy Sets and Systems 106, 239–246 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Jong, K.A.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  6. Emami, M.R., Türkşen, I.B., Goldenberg, A.A.: Development of a Systematic Methodology of Fuzzy Logic Modeling. IEEE Transactions on Fuzzy Systems 63, 346–361 (1998)

    Article  MATH  Google Scholar 

  7. Hellendoorn, H., Driankov, D.: Fuzzy Model Identification: Selected Approaches. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  8. Jang, J.-S.R.: ANFIS: Adaptive Network Based Fuzzy Inference System. IEEE Trans. on System, Man and Cybernetics 23, 665–685 (1993)

    Article  Google Scholar 

  9. Kecman, V.: Learning and Soft Computing. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Kosko, B.: Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  11. Niskanen, V.A.: Soft Computing Methods in Human Sciences. Studies in Fuzziness and Soft Computing, vol. 134. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  12. Pedrycz, W.: Applications of fuzzy relational equations for methods of reasoning in presence of fuzzy data. Fuzzy Sets and Systems 16, 163–175 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pedrycz, W., Lam, P.C.F., Rocha, A.F.: Distributed Fuzzy System Modeling. IEEE Transactions on Systems, Man, and Cybernetics 25, 769–780 (1995)

    Article  Google Scholar 

  14. Sugeno, M., Yasukawa, T.: A Fuzzy Logic Based Approach to Qualitative Modeling. IEEE Transaction on Fuzzy Systems 1, 7–31 (1993)

    Article  Google Scholar 

  15. Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics 15, 116–132 (1985)

    Article  MATH  Google Scholar 

  16. Türkşen, I.B.: Fuzzy Functions with LSE. Applied Soft Computing, to appear (2007)

    Google Scholar 

  17. Çelikyilmaz, A., Türkşen, I.B.: Comparison of Fuzzy Functions with Fuzzy Rule Base Approaches. International Journal of Fuzzy Systems 8, 137–149 (2006)

    MathSciNet  Google Scholar 

  18. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  19. Weiss, S.M., Kulikowski, C.A.: Computer Systems that Learn. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  20. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zadeh, L.A.: Concept of a Linguistic Variable and Its Application to Approximate Reasoning-I. Information Sciences 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zadeh, L.A.: Fuzzy Logic, Neural Networks, and Soft Computing. Communications of the ACM 37, 77–84 (1994)

    Article  Google Scholar 

  23. Zarandi, M.H.F., Türkcsen, I.B., Razaee, B.: A systematic approach to fuzzy modeling for rule generation from numerical data. In: IEEE Annual Meeting of the Fuzzy Information Proceedings NAFIPS ’04, pp. 768–773 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Çelikyılmaz, A., Türkşen, I.B. (2007). Evolution of Fuzzy System Models: An Overview and New Directions. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2007. Lecture Notes in Computer Science(), vol 4482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72530-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72530-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72529-9

  • Online ISBN: 978-3-540-72530-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics