Abstract
Many verification approaches based on automata theory are related to the language containment problem, which is PSPACE-complete for nondeterministic automata. To avoid such a complexity, one may use simulation as an approximation to language containment, since simulation implies language containment and computing simulation is a polynomial time problem. As it is an approximation, there exists a gap between simulation and language containment, therefore there has been an effort to develop methods to narrow the gap while keeping the computation in polynomial time. In this paper, we present such an approach by building a Büchi automaton based on partial marked subset construction to be used in the computation of simulation relation, such that the automaton preserves the original language and has a structure that helps identify more pairs of automata that are in language containment relation. This approach is an improvement to the fair-k-simulation method [3].
Supported by the National Natural Science Foundation of China under Grant No. 60573012 and 60421001, and the National Grand Fundamental Research 973 Program of China under Grant No. 2002cb312200.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bustan, D., Grumberg, O.: Applicability of fair simulation. Information and computation 194(1), 1–18 (2004)
Dill, D.L., Hu, A.J., Wong-Toi, H.: Checking for language inclusion using simulation preorders. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 255–265. Springer, Heidelberg (1992)
Etessami, K.: A Hierarchy of Polynomial-Time Computable Simulations for Automata. In: Brim, L., et al. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 131–144. Springer, Heidelberg (2002)
Holzmann, G.J., Etessami, K.: Optimizing Büchi Automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)
Etessami, K., Wilke, T., Schuller, R.: Fair simulation relations, parity games, and state space reduction for Büchi automata. SIAM Journal of Computing 34(5), 1159–1175 (2005)
Fritz, C.: Constructing Büchi Automata from Linear Temporal Logic Using Simulation Relations for Alternating Büchi Automata. In: H. Ibarra, O., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 35–48. Springer, Heidelberg (2003)
Gurumurthy, S., Bloem, R., Somenzi, F.: Fair Simulation Minimization. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 610–624. Springer, Heidelberg (2002)
Gurumurthy, S., et al.: On Complementing Nondeterministic Büchi Automata. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 96–110. Springer, Heidelberg (2003)
Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair simulation. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 273–287. Springer, Heidelberg (1997)
Jurdzinski, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)
Kesten, Y., Piterman, N., Pnueli, A.: Bridging the Gap Between Fair Simulation and Trace Inclusion. Information and Computation 200(1), 35–61 (2005)
Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. In: STOC’98, pp. 408–429 (1998)
Lindahl, A.: Complementation of Büchi automata: A survey and implementation. Master thesis, Linköpings university Department of computer and information science (2004)
Miyano, S., Hayashi, T.: Alternating Finite Automata on ω-Words. Theoretical Computer Science 32, 321–330 (1984)
Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
Mukund, M.: Finite-state Automata on Infinte Inputs. In: Sixth National Seminar on Theoretical Computer Science, Banasthali Vidyapith, Banasthali, Rajasthan (1996)
Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research 3(2), 115–125 (1959)
Safra, S.: Complexity of automata on infinite object. PhD thesis (1989)
Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yi, J., Zhang, W. (2007). Enhancing Simulation for Checking Language Containment. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-72504-6_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72503-9
Online ISBN: 978-3-540-72504-6
eBook Packages: Computer ScienceComputer Science (R0)