[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Advances in Soft Computing ((AINSC,volume 42))

  • 1318 Accesses

Abstract

We study the structures which satisfy a generalization of the Cantor–Bernstein theorem. This work is inspired by related results concerning quantum structures (orthomodular lattices). It has been proved that σ-complete MV-algebras satisfy a version of the Cantor–Bernstein theorem which assumes that the bounds of isomorphic intervals are boolean. This result has been extended to more general structures, e.g., effect algebras and pseudo-BCK-algebras.

There is another direction of research which has been paid less attention. We ask which algebras satisfy the Cantor–Bernstein theorem in the same form as for σ-complete boolean algebras (due to Sikorski and Tarski) without any additional assumption. In the case of orthomodular lattices, it has been proved that this class is rather large. E.g., every orthomodular lattice can be embedded as a subalgebra or expressed as an epimorphic image of a member of this class. On the other hand, also the complement of this class is large in the same sense. We study the analogous question for MV-algebras and we find out interesting examples of MV-algebras which possess or do not possess this property. This contributes to the mathematical foundations by showing the scope of validity of the Cantor–Bernstein theorem in its original form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beran, L.: Orthomodular Lattices. Algebraic Approach. D. Reidel, Dordrecht (1984)

    Google Scholar 

  2. Cignoli, R., Mundici, D.: An invitation to Chang’s MV-algebras. In: Droste, M., Göbel, R. (eds.) Advances in Algebra and Model Theory, pp. 171–197. Gordon and Breach Publishing Group, Reading (1997)

    Google Scholar 

  3. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Trends in Logic, vol. 7. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  4. De Simone, A., Mundici, D., Navara, M.: A Cantor–Bernstein theorem for σ-complete MV-algebras. Czechoslovak Math. J. 53(128) No. 2, 437–447 (2003)

    Google Scholar 

  5. De Simone, A., Navara, M., Pták, P.: On interval homogeneous orthomodular lattices. Comment. Math. Univ. Carolin. 42(1), 23–30 (2001)

    MATH  MathSciNet  Google Scholar 

  6. De Simone, A., Navara, M.: On the permanence properties of interval homogeneous orthomodular lattices. Math. Slovaca 54, 13–21 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Di Nola, A., Navara, M.: Cantor–Bernstein property for MV-algebras. To appear

    Google Scholar 

  8. Dvurečenskij, A.: Central elements and Cantor–Bernstein theorem for pseudo-effect algebras. J. Austral. Math. Soc. 74, 121–143 (2003)

    Article  MATH  Google Scholar 

  9. Freytes, H.: An algebraic version of the Cantor–Bernstein–Schröder Theorem. Czechoslovak J. Math. 54, 609–621 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. AMS, Providence (1986)

    MATH  Google Scholar 

  11. Grätzer, G.: General Lattice Theory, 2nd edn. J. Wiley, Basel (1998)

    MATH  Google Scholar 

  12. Hanf, W.: On some fundamental problems concerning isomorphism of boolean algebras. Math. Scand. 5, 205–217 (1957)

    MATH  MathSciNet  Google Scholar 

  13. J., J.: Cantor–Bernstein theorem for MV-algebras. Czechoslovak Math. J. 49(124), 517–526 (1999)

    MathSciNet  Google Scholar 

  14. Jakubík, J.: On orthogonally σ-complete lattice ordered groups. Czechoslovak Math. J. 52(128) No. 4, 881–888 (2002)

    Google Scholar 

  15. Jakubík, J.: A theorem of Cantor–Bernstein type for orthogonally σ-complete pseudo MV-algebras. Tatra Mt. Math. Publ. 22, 91–103 (2002)

    Google Scholar 

  16. Jakubík, J.: Convex mappings of archimedean MV-algebras. Math. Slovaca, to appear

    Google Scholar 

  17. Jakubík, J.: Cantor–Bernstein theorem for lattices. Submitted

    Google Scholar 

  18. Jenča, G.: A Cantor–Bernstein type theorem for effect algebras. Algebra Univers. 48, 399–411 (2002)

    Article  MATH  Google Scholar 

  19. Kalmbach, G.: Orthomodular Lattices. Academic Press, London (1983)

    MATH  Google Scholar 

  20. Kallus, M., Trnková, V.: Symmetries and retracts of quantum logics. Int. J. Theor. Phys. 26, 1–9 (1987)

    Article  MATH  Google Scholar 

  21. Kinoshita, S.: A solution to a problem of Sikorski. Fund. Math. 40, 39–41 (1953)

    MATH  MathSciNet  Google Scholar 

  22. Kühr, J.: Cantor–Bernstein theorem for pseudo-BCK-algebras. Preprint (2006)

    Google Scholar 

  23. Levy, A.: Basic Set Theory. Perspectives in Mathematical Logic. Springer, Berlin (1979)

    Google Scholar 

  24. Monk, J.D., Bonnet, R.: Handbook of Boolean Algebras I. North-Holland, Amsterdam (1989)

    Google Scholar 

  25. Mundici, D.: Interpretation of AF C  ∗ -algebras in Łukasiewicz sentential calculus. J. Functional Analysis 65, 15–63 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

  27. Riečan, B., Mundici, D.: Probability on MV-algebras. In: Pap, E. (ed.) Handbook of Measure Theory, North-Holland, Amsterdam (2001)

    Google Scholar 

  28. Sikorski, R.: Boolean Algebras. Ergebnisse Math. Grenzgeb. Springer, Berlin (1960)

    Google Scholar 

  29. Sikorski, R.: A generalization of a theorem of Banach and Cantor–Bernstein. Colloquium Math. 1, 140–144 and 242 (1948)

    MATH  MathSciNet  Google Scholar 

  30. Tarski, A.: Cardinal Algebras. Oxford University Press, New York (1949)

    MATH  Google Scholar 

  31. Trnková, V.: Automorphisms and symmetries of quantum logics. Int. J. Theor. Physics 28, 1195–1214 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oscar Castillo Patricia Melin Oscar Montiel Ross Roberto Sepúlveda Cruz Witold Pedrycz Janusz Kacprzyk

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Di Nola, A., Navara, M. (2007). MV-Algebras with the Cantor–Bernstein Property. In: Castillo, O., Melin, P., Ross, O.M., Sepúlveda Cruz, R., Pedrycz, W., Kacprzyk, J. (eds) Theoretical Advances and Applications of Fuzzy Logic and Soft Computing. Advances in Soft Computing, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72434-6_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72434-6_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72433-9

  • Online ISBN: 978-3-540-72434-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics