Abstract
Subspace clustering (also called projected clustering) addresses the problem that different sets of attributes may be relevant for different clusters in high dimensional feature spaces. In this paper, we propose the algorithm DiSH (Detecting Subspace cluster Hierarchies) that improves in the following points over existing approaches: First, DiSH can detect clusters in subspaces of significantly different dimensionality. Second, DiSH uncovers complex hierarchies of nested subspace clusters, i.e. clusters in lower-dimensional subspaces that are embedded within higher-dimensional subspace clusters. These hierarchies do not only consist of single inclusions, but may also exhibit multiple inclusions and thus, can only be modeled using graphs rather than trees. Third, DiSH is able to detect clusters of different size, shape, and density. Furthermore, we propose to visualize the complex hierarchies by means of an appropriate visualization model, the so-called subspace clustering graph, such that the relationships between the subspace clusters can be explored at a glance. Several comparative experiments show the performance and the effectivity of DiSH.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proc. SIGMOD (1998)
Cheng, C.H., Fu, A.W.C., Zhang, Y.: Entropy-based subspace clustering for mining numerical data. In: Proc. KDD, pp. 84–93 (1999)
Kailing, K., Kriegel, H.P., Kröger, P.: Density-connected subspace clustering for high-dimensional data. In: Proc. SDM (2004)
Kriegel, H.P., Kröger, P., Renz, M., Wurst, S.: A generic framework for efficient subspace clustering of high-dimensional data. In: Proc. ICDM (2005)
Aggarwal, C.C., Procopiuc, C.M., Wolf, J.L., Yu, P.S., Park, J.S.: Fast algorithms for projected clustering. In: Proc. SIGMOD (1999)
Procopiuc, C.M., Jones, M., Agarwal, P.K., Murali, T.M.: A Monte Carlo algorithm for fast projective clustering. In: Proc. SIGMOD (2002)
Böhm, C., Kailing, K., Kriegel, H.P., Kröger, P.: Density connected clustering with local subspace preferences. In: Proc. ICDM (2004)
Achtert, E., Böhm, C., Kriegel, H.-P., Kröger, P., Müller-Gorman, I., Zimek, A.: Finding Hierarchies of Subspace Clusters. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 446–453. Springer, Heidelberg (2006)
Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: Proc. SIGMOD (1999)
Yang, J., Wang, W., Wang, H., Yu, P.S.: Delta-Clusters: Capturing subspace correlation in a large data set. In: Proc. ICDE (2002)
Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: Proc. SIGMOD (2002)
Böhm, C., Kailing, K., Kröger, P., Zimek, A.: Computing clusters of correlation connected objects. In: Proc. SIGMOD (2004)
Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional space. In: Proc. SIGMOD (2000)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. SIGMOD (1994)
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive Identification of Cell Cycle-Regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization.. Molecular Biolology of the Cell 9, 3273–3297 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Achtert, E., Böhm, C., Kriegel, HP., Kröger, P., Müller-Gorman, I., Zimek, A. (2007). Detection and Visualization of Subspace Cluster Hierarchies. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds) Advances in Databases: Concepts, Systems and Applications. DASFAA 2007. Lecture Notes in Computer Science, vol 4443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71703-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-71703-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71702-7
Online ISBN: 978-3-540-71703-4
eBook Packages: Computer ScienceComputer Science (R0)