[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Detection and Visualization of Subspace Cluster Hierarchies

  • Conference paper
Advances in Databases: Concepts, Systems and Applications (DASFAA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4443))

Included in the following conference series:

Abstract

Subspace clustering (also called projected clustering) addresses the problem that different sets of attributes may be relevant for different clusters in high dimensional feature spaces. In this paper, we propose the algorithm DiSH (Detecting Subspace cluster Hierarchies) that improves in the following points over existing approaches: First, DiSH can detect clusters in subspaces of significantly different dimensionality. Second, DiSH uncovers complex hierarchies of nested subspace clusters, i.e. clusters in lower-dimensional subspaces that are embedded within higher-dimensional subspace clusters. These hierarchies do not only consist of single inclusions, but may also exhibit multiple inclusions and thus, can only be modeled using graphs rather than trees. Third, DiSH is able to detect clusters of different size, shape, and density. Furthermore, we propose to visualize the complex hierarchies by means of an appropriate visualization model, the so-called subspace clustering graph, such that the relationships between the subspace clusters can be explored at a glance. Several comparative experiments show the performance and the effectivity of DiSH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proc. SIGMOD (1998)

    Google Scholar 

  2. Cheng, C.H., Fu, A.W.C., Zhang, Y.: Entropy-based subspace clustering for mining numerical data. In: Proc. KDD, pp. 84–93 (1999)

    Google Scholar 

  3. Kailing, K., Kriegel, H.P., Kröger, P.: Density-connected subspace clustering for high-dimensional data. In: Proc. SDM (2004)

    Google Scholar 

  4. Kriegel, H.P., Kröger, P., Renz, M., Wurst, S.: A generic framework for efficient subspace clustering of high-dimensional data. In: Proc. ICDM (2005)

    Google Scholar 

  5. Aggarwal, C.C., Procopiuc, C.M., Wolf, J.L., Yu, P.S., Park, J.S.: Fast algorithms for projected clustering. In: Proc. SIGMOD (1999)

    Google Scholar 

  6. Procopiuc, C.M., Jones, M., Agarwal, P.K., Murali, T.M.: A Monte Carlo algorithm for fast projective clustering. In: Proc. SIGMOD (2002)

    Google Scholar 

  7. Böhm, C., Kailing, K., Kriegel, H.P., Kröger, P.: Density connected clustering with local subspace preferences. In: Proc. ICDM (2004)

    Google Scholar 

  8. Achtert, E., Böhm, C., Kriegel, H.-P., Kröger, P., Müller-Gorman, I., Zimek, A.: Finding Hierarchies of Subspace Clusters. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 446–453. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to identify the clustering structure. In: Proc. SIGMOD (1999)

    Google Scholar 

  10. Yang, J., Wang, W., Wang, H., Yu, P.S.: Delta-Clusters: Capturing subspace correlation in a large data set. In: Proc. ICDE (2002)

    Google Scholar 

  11. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: Proc. SIGMOD (2002)

    Google Scholar 

  12. Böhm, C., Kailing, K., Kröger, P., Zimek, A.: Computing clusters of correlation connected objects. In: Proc. SIGMOD (2004)

    Google Scholar 

  13. Aggarwal, C.C., Yu, P.S.: Finding generalized projected clusters in high dimensional space. In: Proc. SIGMOD (2000)

    Google Scholar 

  14. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. SIGMOD (1994)

    Google Scholar 

  15. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive Identification of Cell Cycle-Regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization.. Molecular Biolology of the Cell 9, 3273–3297 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ramamohanarao Kotagiri P. Radha Krishna Mukesh Mohania Ekawit Nantajeewarawat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Achtert, E., Böhm, C., Kriegel, HP., Kröger, P., Müller-Gorman, I., Zimek, A. (2007). Detection and Visualization of Subspace Cluster Hierarchies. In: Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds) Advances in Databases: Concepts, Systems and Applications. DASFAA 2007. Lecture Notes in Computer Science, vol 4443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71703-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71703-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71702-7

  • Online ISBN: 978-3-540-71703-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics