Abstract
Segmentation is a fundamental task in pattern recognition and basis for high level applications like scene reconstruction, change detection, or object classification. The performance of these tasks suffers from a distorted segmentation. In this contribution an adaptive diffusion-based segmentation method is proposed suppressing perturbations in the segmentation with focusing on small regions with high contrast to their surrounding. The algorithm determines in each step the diffusion tensor. It is re-weighted with respect to an assessment stage. A comparative study uses high-resolution remote sensing data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brox, T., Rosenhahn, B., Weickert, J.: Three-Dimensional Shape Knowledge for Joint Image Segmentation and Pose Estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 109–116. Springer, Heidelberg (2005)
Cremers, D., Schnörr, C., Weickert, J.: Diffusion-Snakes Combining Statistical Shape Knowledge and Image Information in a Variational Framework. In: Paragios, N. (ed.) IEEE Intl. Workshop on Variational and Levelset Methods, Vancouver, pp. 137–144 (2001)
Ender, J.H.G., Brenner, A.R.: PAMIR—a Wideband Phased Array SAR/MTI System. IEE Proc. Radar Sonar Navigat. 150(3), 165–172 (2003)
Hansen, F.R., Elliott, H.: Image Segmentation Using Simple Markov Random Field Models. Computer Graphic and Image Processing 20, 101–132 (1982)
Haralick, R.M., Shapiro, L.G.: Survey- image segmentation techniques. Computer Vision Graphics and Image Processing 29, 100–132 (1985)
Kovtun, I.: Partial Optimal Labeling Search for a NP-Hard Subclass of (max,+) Problems. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 402–409. Springer, Heidelberg (2003)
Makrogiannis, S., Vanhamel, I., Fotopoulos, S., Sahli, H.: Scale Space Segmentation of Color Images Using Watersheds and Region Fusion. In: ICIP 2001, Thessaloniki, Greece (2001)
Makrogiannis, S., Vanhamel, I., Sahli, H.: Scale space Segmentation of Color Images. TR-0076, Vrije Universteit Brussel (2001)
Najman, L., Schmitt, M.: Geodesic Saliency of Watershed Contours and Hierarchical Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(12), 1163–1173 (1996)
Niemann, H.: Pattern Analysis and Understanding. Springer, Heidelberg (1990)
Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 26(9), 1277–1294 (1993)
Rousson, M., Paragios, N.: Shape Priors for Level Set Representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)
Sagerer, G., Niemann, H.: Semantic Networks for Understanding Scenes. Plenum Press, New York (1997)
Schlesinger, M.I., Hlavác, V.: Ten Lectures on Statistical and Structural Pattern Recognition. Kluwer Academic Publishers, Dordrecht (2002)
Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Heidelberg (2003)
Vanhamel, I., Sahli, H., Pratikakis, I.: Hierarchical Multiscale Watershed Segmentation of Color Images. In: Proceedings of First International Conference on Color in Graphics and Image Processing, Saint-Etienne, France, pp. 93–100 (2000)
Weickert, J.: Anisotropic Diffusion in Image Processing. B.G. Teubner, Wiesbaden (1998)
Weickert, J.: Efficient and Reliable Schemes for Nonlinear Diffusion Filtering. IEEE Transaction on Image Processing 7(3) (1998)
Yang, Y.-H., Liu, J.: Multiresolution Image Segmentation. IEEE Transactions Pattern Analysis and Machine Intelligence 16, 689–700 (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Middelmann, W., Ebert, A., Deißler, T., Thoennessen, U. (2007). A Perturbation Suppressing Segmentation Technique Based on Adaptive Diffusion. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_69
Download citation
DOI: https://doi.org/10.1007/978-3-540-71629-7_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71590-0
Online ISBN: 978-3-540-71629-7
eBook Packages: Computer ScienceComputer Science (R0)