[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Perturbation Suppressing Segmentation Technique Based on Adaptive Diffusion

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4432))

Included in the following conference series:

  • 1996 Accesses

Abstract

Segmentation is a fundamental task in pattern recognition and basis for high level applications like scene reconstruction, change detection, or object classification. The performance of these tasks suffers from a distorted segmentation. In this contribution an adaptive diffusion-based segmentation method is proposed suppressing perturbations in the segmentation with focusing on small regions with high contrast to their surrounding. The algorithm determines in each step the diffusion tensor. It is re-weighted with respect to an assessment stage. A comparative study uses high-resolution remote sensing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brox, T., Rosenhahn, B., Weickert, J.: Three-Dimensional Shape Knowledge for Joint Image Segmentation and Pose Estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 109–116. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Cremers, D., Schnörr, C., Weickert, J.: Diffusion-Snakes Combining Statistical Shape Knowledge and Image Information in a Variational Framework. In: Paragios, N. (ed.) IEEE Intl. Workshop on Variational and Levelset Methods, Vancouver, pp. 137–144 (2001)

    Google Scholar 

  3. Ender, J.H.G., Brenner, A.R.: PAMIR—a Wideband Phased Array SAR/MTI System. IEE Proc. Radar Sonar Navigat. 150(3), 165–172 (2003)

    Article  Google Scholar 

  4. Hansen, F.R., Elliott, H.: Image Segmentation Using Simple Markov Random Field Models. Computer Graphic and Image Processing 20, 101–132 (1982)

    Article  Google Scholar 

  5. Haralick, R.M., Shapiro, L.G.: Survey- image segmentation techniques. Computer Vision Graphics and Image Processing 29, 100–132 (1985)

    Article  Google Scholar 

  6. Kovtun, I.: Partial Optimal Labeling Search for a NP-Hard Subclass of (max,+) Problems. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 402–409. Springer, Heidelberg (2003)

    Google Scholar 

  7. Makrogiannis, S., Vanhamel, I., Fotopoulos, S., Sahli, H.: Scale Space Segmentation of Color Images Using Watersheds and Region Fusion. In: ICIP 2001, Thessaloniki, Greece (2001)

    Google Scholar 

  8. Makrogiannis, S., Vanhamel, I., Sahli, H.: Scale space Segmentation of Color Images. TR-0076, Vrije Universteit Brussel (2001)

    Google Scholar 

  9. Najman, L., Schmitt, M.: Geodesic Saliency of Watershed Contours and Hierarchical Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(12), 1163–1173 (1996)

    Article  Google Scholar 

  10. Niemann, H.: Pattern Analysis and Understanding. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  11. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  12. Rousson, M., Paragios, N.: Shape Priors for Level Set Representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Sagerer, G., Niemann, H.: Semantic Networks for Understanding Scenes. Plenum Press, New York (1997)

    Google Scholar 

  14. Schlesinger, M.I., Hlavác, V.: Ten Lectures on Statistical and Structural Pattern Recognition. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  15. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  16. Vanhamel, I., Sahli, H., Pratikakis, I.: Hierarchical Multiscale Watershed Segmentation of Color Images. In: Proceedings of First International Conference on Color in Graphics and Image Processing, Saint-Etienne, France, pp. 93–100 (2000)

    Google Scholar 

  17. Weickert, J.: Anisotropic Diffusion in Image Processing. B.G. Teubner, Wiesbaden (1998)

    MATH  Google Scholar 

  18. Weickert, J.: Efficient and Reliable Schemes for Nonlinear Diffusion Filtering. IEEE Transaction on Image Processing 7(3) (1998)

    Google Scholar 

  19. Yang, Y.-H., Liu, J.: Multiresolution Image Segmentation. IEEE Transactions Pattern Analysis and Machine Intelligence 16, 689–700 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Middelmann, W., Ebert, A., Deißler, T., Thoennessen, U. (2007). A Perturbation Suppressing Segmentation Technique Based on Adaptive Diffusion. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71629-7_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71590-0

  • Online ISBN: 978-3-540-71629-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics