Abstract
In this paper we present a dynamic programming formulation of a hybrid optimal control problem for bimodal systems with regional dynamics. In particular, based on optimality-zone computations, a framework is presented in which the resulting hybrid Bellman equation guides the design of optimal control programs with, at most, N discrete transitions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bemporad, A., Borrelli, F., Morari, M.: On the Optimal Control Law for Linear Discrete Time Hybrid Systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, Springer, Heidelberg (2002)
Branicky, M., Borkar, V., Mitter, S.: A Unified Framework for Hybrid Control: Model and Optimal Control Theory. IEEE Transactions on Automatic Control 43(1), 31–45 (1998)
Caines, P., Shaikh, S.: Optimality Zone Algorithms for Hybrid Systems: Efficient Algorithms for Optimal Location and Control Computation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, Springer, Heidelberg (2006)
Egerstedt, M., Wardi, Y., Axelsson, H.: Transition-Time Optimization for Switched Systems. IEEE Transactions on Automatic Control 51(1), 110–115 (2006)
Hedlund, S., Rantzer, A.: Optimal Control of Hybrid System. In: Proceedings of the IEEE Conference on Decision and Control, Phoenix, AZ, December 1999, pp. 3972–3977. IEEE Computer Society Press, Los Alamitos (1999)
Sussmann, H.J.: Set-Valued Differentials and the Hybrid Maximum Principle. In: IEEE Conference on Decision and Control, vol. 1, pp. 558–563. IEEE, Los Alamitos (2000)
Xu, X., Antsaklis, P.: Optimal Control of Switched Autonomous Systems. In: IEEE Conference on Decision and Control, Las Vegas, NV, Dec. 2002, IEEE Computer Society Press, Los Alamitos (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Caines, P., Egerstedt, M., Malhame, R., Schöllig, A. (2007). A Hybrid Bellman Equation for Bimodal Systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds) Hybrid Systems: Computation and Control. HSCC 2007. Lecture Notes in Computer Science, vol 4416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71493-4_54
Download citation
DOI: https://doi.org/10.1007/978-3-540-71493-4_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71492-7
Online ISBN: 978-3-540-71493-4
eBook Packages: Computer ScienceComputer Science (R0)