[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Stochastic Framework for Hybrid System Identification with Application to Neurophysiological Systems

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4416))

Included in the following conference series:

  • 2478 Accesses

Abstract

This paper adapts the Gibbs sampling method to the problem of hybrid system identification. We define a Generalized Linear Hiddenl Markov Model (GLHMM) that combines switching dynamics from Hidden Markov Models, with a Generalized Linear Model (GLM) to govern the continuous dynamics. This class of models, which includes conventional ARX models as a special case, is particularly well suited to this identification approach. Our use of GLMs is also driven by potential applications of this approach to the field of neural prosthetics, where neural Poisson-GLMs can model neural firing behavior. The paper gives a concrete algorithm for identification, and an example motivated by neuroprosthetic considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Juloski, A., et al.: Comparison of four procedures for the identification of hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 354–369. Springer, Heidelberg (2005)

    Google Scholar 

  2. Bemporad, A., et al.: A greedy approach to identification of piecewise affine models. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, p. 97. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Juloski, A., Weiland, S., Heemels, W.: A Bayesian approach to identification of hybrid systems. In: IEEE Conf. on Decision and Control, vol. 1, Nassau, Bahamas, pp. 13–19. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  4. Vidal, R., et al.: An algebraic geometric approach to the identification of a class of linear hybrid systems. In: IEEE Conference on Decision and Control, IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  5. Ferrari-Trecate, G., et al.: A clustering technique for the identification of piecewise affine systems. Automatica 39, 205–217 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Nicolelis, M.A.L.: Brain-machine interfaces to restore motor function and probe neural circuit. Nature Reviews Neuroscience 4, 417–422 (2003)

    Article  Google Scholar 

  7. Pesaran, B., Musallam, S., Andersen, R.: Cognitive neural prosthetics. Current Biology 16, 77–80 (2006)

    Article  Google Scholar 

  8. Shenoy, K., et al.: Neural prosthetic control signals from plan activity. Neuroreport 14(4), 591–596 (2003)

    Article  Google Scholar 

  9. Truccolo, W., et al.: A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol. 93(2), 1074–1089 (2005)

    Article  Google Scholar 

  10. Oh, S.M., Rehg, J.M., Dellaert, F.: Parameterized duration modeling for switching linear dynamic systems. In: IEEE Conf. on Computer Vision and Pattern Recog., IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  11. Rosti, A.V.: Linear Gaussian Models for Speech Recognition. PhD thesis, Wolfson College, University of Cambridge (2004)

    Google Scholar 

  12. Ljung, L.: System Identification, Theory for the User, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  13. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77, 257–286 (1989)

    Article  Google Scholar 

  14. Robert, C., Celeux, G., Diebolt, J.: Bayesian estimation of hidden Markov chains: A stochastic implementation. Statistics & Probability Letters 16, 77–83 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hoffmann, J.P.: Generalized Linear Models: an Applied Approach. Pearson Education, London (2004)

    Google Scholar 

  16. Djuric, P.M., Chun, J.H.: An MCMC sampling approach to estimation of nonstationary hidden Markov models. IEEE Trans. on Signal Processing 50(5), 1113–1123 (2002)

    Article  Google Scholar 

  17. McCulloch, C.E.: Maximum likelihood algorithms for generalized linear mixed models. Journal of the American Statistical Association 92(437), 162–170 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dellaportas, P., Smith, A.F.M.: Bayesian inference for generalized linear and proportional hazards models via Gibbs sampling. App. Stat. 42(3), 443–459 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gilks, W.R., Wild, P.: Adaptive rejection sampling for Gibbs sampling. Applied Statistics 41(2), 337–348 (1992)

    Article  MATH  Google Scholar 

  20. Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.): Markov Chain Monte Carlo in Practice. Chapman and Hall, Boca Raton (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alberto Bemporad Antonio Bicchi Giorgio Buttazzo

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Hudson, N., Burdick, J. (2007). A Stochastic Framework for Hybrid System Identification with Application to Neurophysiological Systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds) Hybrid Systems: Computation and Control. HSCC 2007. Lecture Notes in Computer Science, vol 4416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71493-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71493-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71492-7

  • Online ISBN: 978-3-540-71493-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics