[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Query Reformulation and Refinement Using NLP-Based Sentence Clustering

  • Conference paper
Advances in Information Retrieval (ECIR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4425))

Included in the following conference series:

  • 2151 Accesses

Abstract

We have developed an interactive query refinement tool that helps users search a knowledge base for solutions to problems with electronic equipment. The system is targeted towards non-technical users, who are often unable to formulate precise problem descriptions on their own. Two distinct but interrelated functionalities support the refinement of a vague, non-technical initial query into a more precise problem description: a synonymy mechanism that allows the system to match non-technical words in the query with corresponding technical terms in the knowledge base, and a novel refinement mechanism that helps the user build up successively longer and more precise problem descriptions starting from the seed of the initial query. A natural language parser is used both in the application of context-sensitive synonymy rules and the construction of the refinement tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aït-Mokhtar, S., Chanod, J.-P., Roux, C.: Robustness beyond shallowness: incremental dependency parsing. NLE Journal (2002)

    Google Scholar 

  2. Abney, S.P.: Parsing by Chunks. In: Berwick, R.C., Abney, S.P., Tenny, C. (eds.) Principle-Based Parsing: Computation and Psycholinguistics, pp. 257–278. Kluwer Academic Publishers, Boston (1991)

    Google Scholar 

  3. Aha, D.W., Maney, T., Breslow, L.A.: Supporting Dialogue Inferencing in Conversational Case-Based Reasoning. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Anick, P.G.: Adapting a full-text information retrieval system to the computer troubleshooting domain. In: Proceedings of the 17th Annual international ACM SIGIR Conference on Research and Development in Information Retrieval, July 1994, pp. 349–358. Springer, New York (1994)

    Google Scholar 

  5. Anick, P.G., Tipirneni, S.: The paraphrase search assistant: terminological feedback for iterative information seeking. In: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pp. 153–159. ACM Press, New York (1999)

    Chapter  Google Scholar 

  6. Belkin, N.J., et al.: Iterative exploration, design and evaluation of support for query reformulation in interactive information retrieval. Information Processing Management 37(3), 403–434 (2001)

    Article  MATH  Google Scholar 

  7. Bobrow, D.G., Whalen, J.: Community knowledge sharing in practice: the Eureka story. Journal of the Society for Organizational Learning 4(2) (2002)

    Google Scholar 

  8. Cutting, D.R., et al.: Scatter/Gather: a cluster-based approach to browsing large document collections. In: Proceedings of the 15th Annual international ACM SIGIR Conference on Research and Development in information Retrieval, Copenhagen, Denmark, June 1992, pp. 318–329. ACM Press, New York (1992)

    Chapter  Google Scholar 

  9. Edgar, K.D., et al.: A user evaluation of hierarchical phrase browsing. In: Koch, T., Sølvberg, I.T. (eds.) ECDL 2003. LNCS, vol. 2769, Springer, Heidelberg (2003)

    Google Scholar 

  10. Jensen, F.V., Skaanning, C., Kjaerulff, U.: The SACSO system for Troubleshooting of Printing Systems. In: Proc. of SCAI 2001, pp. 67–79 (2001)

    Google Scholar 

  11. Kang, B.H., et al.: Help Desk System with Intelligent Interface. Applied Artificial Intelligence 11(7), 611–631 (1997)

    Article  Google Scholar 

  12. Lawrie, D., Croft, W.B., Rosenberg, A.: Finding topic words for hierarchical summarization. In: SIGIR ’01: Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 349–357. ACM Press, New York (2001)

    Chapter  Google Scholar 

  13. O’Neill, J., et al.: Using real-life troubleshooting interactions to inform self-assistance design. In: Proc. of INTERACT, Rome, Italy, 12-16 Sep (2005)

    Google Scholar 

  14. Peischl, B., Wotowa, F.: Model-based diagnosis or reasoning from first principles. IEEE Intelligent Systems 18(3), 32–37 (2003)

    Article  Google Scholar 

  15. Rocchio, J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART Retrieval System—Experiments in Automatic Document Processing, Prentice-Hall, Englewood Cliffs (1971)

    Google Scholar 

  16. Sanderson, M., Croft, B.: Deriving concept hierarchies from text. In: SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pp. 206–213. ACM Press, New York (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giambattista Amati Claudio Carpineto Giovanni Romano

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Roulland, F. et al. (2007). Query Reformulation and Refinement Using NLP-Based Sentence Clustering. In: Amati, G., Carpineto, C., Romano, G. (eds) Advances in Information Retrieval. ECIR 2007. Lecture Notes in Computer Science, vol 4425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71496-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71496-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71494-1

  • Online ISBN: 978-3-540-71496-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics