[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract Counterexample-Based Refinement for Powerset Domains

  • Chapter
Program Analysis and Compilation, Theory and Practice

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4444))

  • 611 Accesses

Abstract

Counterexample-guided abstraction refinement (CEGAR) is a powerful technique to scale automatic program analysis techniques to large programs. However, so far it has been used primarily for model checking in the context of predicate abstraction. We formalize CEGAR for general powerset domains. If a spurious abstract counterexample needs to be removed through abstraction refinement, there are often several choices, such as which program location(s) to refine, which abstract domain(s) to use at different locations, and which abstract values to compute. We define several plausible preference orderings on abstraction refinements, such as refining as “late” as possible and as “coarse” as possible. We present generic algorithms for finding refinements that are optimal with respect to the different preference orderings. We also compare the different orderings with respect to desirable properties, including the property if locally optimal refinements compose to a global optimum. Finally, we point out some difficulties with CEGAR for non-powerset domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ball, T., Rajamani, S.K.: The slam project: Debugging system software via static analysis. In: POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, Portland, Oregon, pp. 1–3. ACM Press, New York (2002)

    Chapter  Google Scholar 

  2. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy shape analysis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 532–546. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Clarke, E.M., et al.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction of approximation of fixed points. In: Proc. Symp. on Principles of Prog. Languages, pp. 238–252. ACM Press, New York (1977)

    Google Scholar 

  5. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Gulavani, B.S., Rajamani, S.K.: Counterexample driven refinement for abstract interpretation. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 474–488. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Henzinger, T.A., et al.: Abstractions from proofs. In: POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages, Venice, Italy, pp. 232–244. ACM Press, New York (2004)

    Chapter  Google Scholar 

  8. Henzinger, T.A., et al.: Lazy abstraction. In: Symposium on Principles of Programming Languages, pp. 58–70 (2002)

    Google Scholar 

  9. Lev-Ami, T., Sagiv, M.: TVLA: A framework for Kleene based static analysis. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–301. Springer, Heidelberg (2000)

    Google Scholar 

  10. Loginov, A., Reps, T., Sagiv, M.: Abstraction refinement via inductive learning. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 519–533. Springer, Heidelberg (2005)

    Google Scholar 

  11. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (2001)

    Google Scholar 

  12. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Transactions on Programming Languages and Systems (TOPLAS) 24(3), 217–298 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas Reps Mooly Sagiv Jörg Bauer

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Manevich, R., Field, J., Henzinger, T.A., Ramalingam, G., Sagiv, M. (2007). Abstract Counterexample-Based Refinement for Powerset Domains. In: Reps, T., Sagiv, M., Bauer, J. (eds) Program Analysis and Compilation, Theory and Practice. Lecture Notes in Computer Science, vol 4444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71322-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71322-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71315-9

  • Online ISBN: 978-3-540-71322-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics