[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Identification of Dynamic Gene-Protein Networks

  • Conference paper
Knowledge Discovery and Emergent Complexity in Bioinformatics (KDECB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4366))

Abstract

In this study we will focus on piecewise linear state space models for gene-protein interaction networks. We will follow the dynamical systems approach with special interest for partitioned state spaces. From the observation that the dynamics in natural systems tends to punctuated equilibria, we will focus on piecewise linear models and sparse and hierarchic interactions, as, for instance, described by Glass, Kauffman, and de Jong. Next, the paper is concerned with the identification (also known as reverse engineering and reconstruction) of dynamic genetic networks from microarray data. We will describe exact and robust methods for computing the interaction matrix in the special case of piecewise linear models with sparse and hierarchic interactions from partial observations. Finally, we will analyze and evaluate this approach with regard to its performance and robustness towards intrinsic and extrinsic noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bower, J.M., Bolouri, H. (eds.): Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge (2001)

    Google Scholar 

  2. de Jong, H.: Modeling and Simulation of Genetic RegulatorySystems: A Literature Review. Journal of Computational Biology 9(1), 67–103 (2002)

    Article  Google Scholar 

  3. de Jong, H., et al.: Qualitative simulation of genetic regulatory networks usingpiecewise-linear models. Bull. Math. Biol. 66(2), 301–340 (2004)

    Article  MathSciNet  Google Scholar 

  4. Elowitz, M.B., et al.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  Google Scholar 

  5. Endy, D., Brent, R.: Modeling Cellular Behavior. Nature 409(6818), 391–395 (2001)

    Article  Google Scholar 

  6. Fuchs, J.J.: More on sparse representations in arbitrary bases. In: Proc. 13th IFAC Symp. on System Identification, Sysid 2003, Rotterdam, The Netherlands, August 27-29, pp. 1357–1362 (2003)

    Google Scholar 

  7. Fuchs, J.J.: On sparse representations in arbitrary redundant bases. IEEE Trans. on IT (June 2004)

    Google Scholar 

  8. Glass, L., Kauffman, S.A.: The Logical Analysis of Continuous Non-linear Biochemical Control Networks. J.Theor.Biol. 39(1), 103–129 (1973)

    Article  Google Scholar 

  9. Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420, 238–245 (2002)

    Article  Google Scholar 

  10. Gonze, D., Halloy, J., Goldbeter, A.: Stochastic models for circadian oscillations: Emergence of a biological rhythm. Int. J. Quantum Chem. 98, 228–238 (2004)

    Article  Google Scholar 

  11. Hasty, J., et al.: Computational studies of gene regulatory networks: in numero molecular biology. Nature Reviews Genetics 2(4), 268–279 (2001)

    Article  Google Scholar 

  12. Novak, B., Tyson, J.J.: Modeling the control of DNA replication in fission yeast. PNAS, USA 94, 9147–9152 (1997)

    Article  Google Scholar 

  13. Øyehaug, L., Plahte, E., Omholt, S.W.: Targeted reduction of complex models with time scale hierarchy–a case study. Mathematical Biosciences 185, 123–152 (2003)

    Article  MathSciNet  Google Scholar 

  14. Peeters, R.L.M., Westra, R.L.: On the identification of sparse gene regulatory networks. In: Proc. of the 16th Intern. Symp. on Mathematical Theory of Networks and Systems (MTNS2004), Leuven, Belgium, July 5-9 (2004)

    Google Scholar 

  15. Plahte, E., Mestl, T., Omholt, S.W.: A methodological basis for description and analysis of systems with complex switch-like interactions. Journal of Mathematical Biology 36, 321–348 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rosenfeld, N., et al.: Gene regulation at the single-cell level. Science 307, 1962 (2005)

    Article  Google Scholar 

  17. Somogyi, R., et al.: The Gene Expression Matrix: Towards the Extraction of Genetic Network Architectures. Nonlinear Analysis, Proc. of Second World Cong. of Nonlinear Analysis (WCNA96) 30(3) pp. 1815–1824 (1997)

    Google Scholar 

  18. Swain, P.S.: Efficient attenuation of stochasticity in gene expression through post-transcriptional control. J. Mol. Biol. 344, 965 (2004)

    Article  Google Scholar 

  19. Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. PNAS 99, 12795 (2002)

    Article  Google Scholar 

  20. Steuer, R.: Effects of stochasticity in models of the cell cycle:from quantized cycle times to noise-induced oscillations. Journal of Theoretical Biology 228, 293–301 (2004)

    Article  MathSciNet  Google Scholar 

  21. van Schuppen, J.H.: System theory of rational positive systems for cell reaction networks, CWI Report MAS-E0421 (December 2004)

    Google Scholar 

  22. Verdult, V., Verhaegen, M.: Subspace Identification of Piecewise Linear Systems. In: Proc. 43rd IEEE Conference on Decision and Control (CDC), Atlantis, Paradise Island, Bahamas, December 2004, pp. 3838–3843. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  23. Westra, R.L.: Piecewise Linear Dynamic Modeling and Identification of Gene-Protein Interaction Networks. In: Nisis/JCB Workshop reverse engineering, Jena, June 10 (2005a)

    Google Scholar 

  24. Yeung, M.K.S., Tegnér, J., Collins, J.J.: Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Nat. Acad. Science 99(9), 6163–6168 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Karl Tuyls Ronald Westra Yvan Saeys Ann Nowé

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Westra, R.L., Hollanders, G., Bex, G.J., Gyssens, M., Tuyls, K. (2007). The Identification of Dynamic Gene-Protein Networks. In: Tuyls, K., Westra, R., Saeys, Y., Nowé, A. (eds) Knowledge Discovery and Emergent Complexity in Bioinformatics. KDECB 2006. Lecture Notes in Computer Science(), vol 4366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71037-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71037-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71036-3

  • Online ISBN: 978-3-540-71037-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics