[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Phase-Field Versus Level Set Method for 2D Dendritic Growth

  • Conference paper
Numerical Methods and Applications (NMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4310))

Included in the following conference series:

Abstract

The goal of the paper is to review and compare two of the most popular methods for modeling the dendritic solidification in 2D, that tracks the interface between phases implicitly, e.g. the phase-field method and the level set method. We apply these methods to simulate the dendritic crystallization of a pure melt. Numerical experiments for different anisotropic strengths are presented. The two methods compare favorably and the obtained tip velocities and tip shapes are in good agreement with the microscopic solvability theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Juric, D., Tryggvason, G.: A front tracking method for dendritic solidification. J. Comput. Phys. 123, 127–148 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Karma, A., Rappel, W.-J.: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53, 3017–3020 (1996)

    Google Scholar 

  3. Karma, A., Rappel, W.-J.: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323–4349 (1998)

    Google Scholar 

  4. Slavov, V., Dimova, S., Iliev, O.: Phase-field method for 2D dendritic growth. In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 404–411. Springer, Heidelberg (2003)

    Google Scholar 

  5. Slavov, V., Dimova, S.: Phase-field modelling of dendritic interaction in 2D. Mathematics and Education in Mathematics 2902, 466–471 (2004)

    MathSciNet  Google Scholar 

  6. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi Formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, S., et al.: A simple level set approach for solving Stefan problems. J. Comput. Phys. 135, 89–112 (1997)

    Article  MathSciNet  Google Scholar 

  9. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Review 43, 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Novikov, V., Novikov, E.: Stability control of explicit one-step methods for integration of ordinary differential equations. Dokl. Akad. Nauk SSSR 272, 1058–1062 (1984)

    Google Scholar 

  11. Gibou, F., et al.: A Level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19, 183–199 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kim, Y., Goldenfeld, N., Dantzig, J.: Computation of dendritic microstructures using a level set method. Phys. Rev. E 62, 2471–2474 (2000)

    Article  Google Scholar 

  13. Peng, D., et al.: A PDE-based local Level set method. J. Comput. Phys. 155, 410–438 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Todor Boyanov Stefka Dimova Krassimir Georgiev Geno Nikolov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Slavov, V., Dimova, S. (2007). Phase-Field Versus Level Set Method for 2D Dendritic Growth. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2006. Lecture Notes in Computer Science, vol 4310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70942-8_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70942-8_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70940-4

  • Online ISBN: 978-3-540-70942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics