[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Lie Brackets and Stabilizing Feedback Controls

  • Conference paper
Numerical Methods and Applications (NMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4310))

Included in the following conference series:

  • 2271 Accesses

Abstract

The relation between a class of high-order control variations and the asymptotic stabilizability of a smooth control system is briefly discussed. Assuming that there exist high-order control variations ”pointing” to a closed set at every point of some its neighborhood, an approach for constructing stabilizing feedback controls is proposed. Two illustrative examples are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrachev, A., Gamkrelidze, R.: Local controllability and semigroups of diffeomorphisms. Acta Applicandae Mathematicae 32, 1–57 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brockett, R.: Asymptotic stability and feedback stabilization. In: Brockett, R., Millmann, R., Sussmann, H. (eds.) Differential Geometric Control Theory. Progr. Math., vol. 27, pp. 181–191. Birkhäuser, Basel (1983)

    Google Scholar 

  3. Clarke, F.H., et al.: Nonsmooth analysis and control theory. Graduate Text in Mathematics, vol. 178. Springer, New York (1998)

    MATH  Google Scholar 

  4. Frankowska, H.: Local controllability of control systems with feedback. J. Optimiz. Theory Appl. 60, 277–296 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hermes, H.: On the synthesis of a stabilizing feedback control via Lie algebraic methods. SIAM J. Control Optimiz. 16, 715–727 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hermes, H.: Lie algebras of vector fields and local approximation of attainable sets. SIAM J. Control Optimiz. 18, 352–361 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Krastanov, M., Quincampoix, M.: Local small-time controllability and attainability of a set for nonlinear control systems. ESAIM: Control. Optim. Calc. Var. 6, 499–516 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Krastanov, M.I.: A sufficient condition for small-time local attainability of a set. Control and Cybernetics 31(3), 739–750 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Krastanov, M.I., Veliov, V.M.: On the controllability of switching linear systems. Automatica 41, 663–668 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sussmann, H.J.: A general theorem on local controllability. SIAM J. Control Optimiz. 25, 158–194 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Veliov, V.M., Krastanov, M.I.: Controllability of piecewise linear systems. Systems & Control Letters 7, 335–341 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Veliov, V.: On the controllability of control constrained linear systems. Math. Balk., New Ser. 2, 147–155 (1988)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Todor Boyanov Stefka Dimova Krassimir Georgiev Geno Nikolov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Krastanov, M.I. (2007). Lie Brackets and Stabilizing Feedback Controls. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2006. Lecture Notes in Computer Science, vol 4310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70942-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70942-8_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70940-4

  • Online ISBN: 978-3-540-70942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics