Abstract
In this article we propose optimal and quasi optimal solutions to the problem of searching for the maximum lighting point inside a polygon P of n vertices. This problem is solved by using three different techniques: random search, simulated annealing and gradient. Our comparative study shows that simulated annealing is very competitive in this application. To accomplish the study, a new polygon generator has been implemented, which greatly helps in the general validation of our claims on the illumination problem as a new class of optimization task.
Partially supported by TIN 2005-08818-C04-01 and CAM S-0505/DPI/023.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Auer, T., Held, M.: Heuristics for the Generation of Random Polygons. In: Proc. 8th Canad. Conf. Comput. Geom., Ottawa, Canada, Aug., pp. 38–44 (1996)
Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford Press, Oxford (1996)
Canales, S.: Métodos Heurísticos en Problemas Geométricos. Visibilidad, Iluminación y Vigilancia. Ph. D. Thesis, UPM, Spain (2004)
Dowsland, K.A.: Simulated Annealing. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for Combinatorial Problems, Blackwell Scientific Pub., Oxford (1993)
Eidenbenz, S. (In)-Approximability of Visibility Problems on Polygons and Terrains. Ph. D. Thesis, Swiss Federal Institute of Tecnology Zurich (2000)
Fogel, D.: Evolutionay Computation. IEEE Computer Society Press, Los Alamitos (1995)
Gelatt, C.D., Kirkpatrick, S., Vecchi, M.P.: Optimazation by simulated annealing. Science 220, 671–680 (1983)
Ghosh, S.K.: Approximation algorithms for Art Gallery Problems. In: Proceedings of the Canadian Information Processing Society Congress (1987)
Ingber, L.: Very fast simulated re-annealing. Math. Comput. Modelling 12(8), 967–973 (1989)
Lee, D.T., Lin, A.K.: Computational complexity of art gallery problem. IEEE Trans. Info. Th. IT-32, 415–421 (1979)
Szu, H.H., Hartley, R.L.: Fast simulated annealig. Physic Letters A 122, 157–162 (1987)
Urrutia, J.: Art Gallery and Illumination Problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook on Computational Geometry, Elsevier, Amsterdam (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Abellanas, M., Alba, E., Canales, S., Hernández, G. (2007). Solving the Illumination Problem with Heuristics. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2006. Lecture Notes in Computer Science, vol 4310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70942-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-70942-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70940-4
Online ISBN: 978-3-540-70942-8
eBook Packages: Computer ScienceComputer Science (R0)