[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Solving the Illumination Problem with Heuristics

  • Conference paper
Numerical Methods and Applications (NMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4310))

Included in the following conference series:

  • 2270 Accesses

Abstract

In this article we propose optimal and quasi optimal solutions to the problem of searching for the maximum lighting point inside a polygon P of n vertices. This problem is solved by using three different techniques: random search, simulated annealing and gradient. Our comparative study shows that simulated annealing is very competitive in this application. To accomplish the study, a new polygon generator has been implemented, which greatly helps in the general validation of our claims on the illumination problem as a new class of optimization task.

Partially supported by TIN 2005-08818-C04-01 and CAM S-0505/DPI/023.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auer, T., Held, M.: Heuristics for the Generation of Random Polygons. In: Proc. 8th Canad. Conf. Comput. Geom., Ottawa, Canada, Aug., pp. 38–44 (1996)

    Google Scholar 

  2. Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford Press, Oxford (1996)

    Google Scholar 

  3. Canales, S.: Métodos Heurísticos en Problemas Geométricos. Visibilidad, Iluminación y Vigilancia. Ph. D. Thesis, UPM, Spain (2004)

    Google Scholar 

  4. Dowsland, K.A.: Simulated Annealing. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for Combinatorial Problems, Blackwell Scientific Pub., Oxford (1993)

    Google Scholar 

  5. Eidenbenz, S. (In)-Approximability of Visibility Problems on Polygons and Terrains. Ph. D. Thesis, Swiss Federal Institute of Tecnology Zurich (2000)

    Google Scholar 

  6. Fogel, D.: Evolutionay Computation. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  7. Gelatt, C.D., Kirkpatrick, S., Vecchi, M.P.: Optimazation by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  8. Ghosh, S.K.: Approximation algorithms for Art Gallery Problems. In: Proceedings of the Canadian Information Processing Society Congress (1987)

    Google Scholar 

  9. Ingber, L.: Very fast simulated re-annealing. Math. Comput. Modelling 12(8), 967–973 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problem. IEEE Trans. Info. Th. IT-32, 415–421 (1979)

    MathSciNet  Google Scholar 

  11. Szu, H.H., Hartley, R.L.: Fast simulated annealig. Physic Letters A 122, 157–162 (1987)

    Article  Google Scholar 

  12. Urrutia, J.: Art Gallery and Illumination Problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook on Computational Geometry, Elsevier, Amsterdam (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Todor Boyanov Stefka Dimova Krassimir Georgiev Geno Nikolov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Abellanas, M., Alba, E., Canales, S., Hernández, G. (2007). Solving the Illumination Problem with Heuristics. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2006. Lecture Notes in Computer Science, vol 4310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70942-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70942-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70940-4

  • Online ISBN: 978-3-540-70942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics