[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Probabilistic Framework for Correspondence and Egomotion

  • Conference paper
Dynamical Vision (WDV 2006, WDV 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4358))

Abstract

This paper is an argument for two assertions: First, that by representing correspondence probabilistically, drastically more correspondence information can be extracted from images. Second, that by increasing the amount of correspondence information used, more accurate egomotion estimation is possible. We present a novel approach illustrating these principles.

We first present a framework for using Gabor filters to generate such correspondence probability distributions. Essentially, different filters ’vote’ on the correct correspondence in a way giving their relative likelihoods. Next, we use the epipolar constraint to generate a probability distribution over the possible motions. As the amount of correspondence information is increased, the set of motions yielding significant probabilities is shown to ’shrink’ to the correct motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clocksin, W.F.: A new method for computing optical flow. In: BMVC (2000)

    Google Scholar 

  2. Harris, C.G., Stephens, M.: A combined corner and edge detector. In: AVC88, pp. 147–151 (1988)

    Google Scholar 

  3. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  4. Marr, D.: Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman, San Francisco (1982)

    Google Scholar 

  5. Simoncelli, E P, Adelson, E H, Heeger, D J: Probability distributions of optical flow. In: Proc. Conf. on Computer Vision and Pattern Recognition, Mauii, Hawaii, pp. 310–315. IEEE Computer Society Press, Los Alamitos (1991), citeseer.ist.psu.edu/simoncelli91probability.html

    Chapter  Google Scholar 

  6. Fleet, D.: Disparity from local weighted phase-correlation. In: IEEE International Conference on SMC, pp. 46–48. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  7. Sanger, T.D.: Stereo disparity computation using gabor filters. Biol. Cybern. 59, 405–418 (1988)

    Article  Google Scholar 

  8. Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. Int. J. Comput. Vision 5(1), 77–104 (1990)

    Article  Google Scholar 

  9. Nestares, O., Navarro, R., Portilla, J., Tabernero, A.: Efficient spatial-domain implementation of a multiscale image representation based on gabor functions. Journal of Electronic Imaging 7, 166–173 (1998)

    Article  Google Scholar 

  10. Oliensis, J.: A critique of structure-from-motion algorithms. Computer Vision and Image Understanding: CVIU 80(2), 172–214 (2000), citeseer.ist.psu.edu/oliensis00critique.html

    Article  MATH  Google Scholar 

  11. Makadia, A., Geyer, C., Daniilidis, K.: Radon-based structure from motion without correspondences. In: CVPR (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

René Vidal Anders Heyden Yi Ma

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Domke, J., Aloimonos, Y. (2007). A Probabilistic Framework for Correspondence and Egomotion. In: Vidal, R., Heyden, A., Ma, Y. (eds) Dynamical Vision. WDV WDV 2006 2005. Lecture Notes in Computer Science, vol 4358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70932-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70932-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70931-2

  • Online ISBN: 978-3-540-70932-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics