Abstract
This paper is an argument for two assertions: First, that by representing correspondence probabilistically, drastically more correspondence information can be extracted from images. Second, that by increasing the amount of correspondence information used, more accurate egomotion estimation is possible. We present a novel approach illustrating these principles.
We first present a framework for using Gabor filters to generate such correspondence probability distributions. Essentially, different filters ’vote’ on the correct correspondence in a way giving their relative likelihoods. Next, we use the epipolar constraint to generate a probability distribution over the possible motions. As the amount of correspondence information is increased, the set of motions yielding significant probabilities is shown to ’shrink’ to the correct motion.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Clocksin, W.F.: A new method for computing optical flow. In: BMVC (2000)
Harris, C.G., Stephens, M.: A combined corner and edge detector. In: AVC88, pp. 147–151 (1988)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Marr, D.: Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman, San Francisco (1982)
Simoncelli, E P, Adelson, E H, Heeger, D J: Probability distributions of optical flow. In: Proc. Conf. on Computer Vision and Pattern Recognition, Mauii, Hawaii, pp. 310–315. IEEE Computer Society Press, Los Alamitos (1991), citeseer.ist.psu.edu/simoncelli91probability.html
Fleet, D.: Disparity from local weighted phase-correlation. In: IEEE International Conference on SMC, pp. 46–48. IEEE Computer Society Press, Los Alamitos (1994)
Sanger, T.D.: Stereo disparity computation using gabor filters. Biol. Cybern. 59, 405–418 (1988)
Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. Int. J. Comput. Vision 5(1), 77–104 (1990)
Nestares, O., Navarro, R., Portilla, J., Tabernero, A.: Efficient spatial-domain implementation of a multiscale image representation based on gabor functions. Journal of Electronic Imaging 7, 166–173 (1998)
Oliensis, J.: A critique of structure-from-motion algorithms. Computer Vision and Image Understanding: CVIU 80(2), 172–214 (2000), citeseer.ist.psu.edu/oliensis00critique.html
Makadia, A., Geyer, C., Daniilidis, K.: Radon-based structure from motion without correspondences. In: CVPR (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Domke, J., Aloimonos, Y. (2007). A Probabilistic Framework for Correspondence and Egomotion. In: Vidal, R., Heyden, A., Ma, Y. (eds) Dynamical Vision. WDV WDV 2006 2005. Lecture Notes in Computer Science, vol 4358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70932-9_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-70932-9_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70931-2
Online ISBN: 978-3-540-70932-9
eBook Packages: Computer ScienceComputer Science (R0)