[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Searching for Supermaximal Repeats in Large DNA Sequences

  • Conference paper
Bioinformatics Research and Development (BIRD 2008)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 13))

Included in the following conference series:

Abstract

We study the problem of finding supermaximal repeats in large DNA sequences. For this, we propose an algorithm called SMR which uses an auxiliary index structure (POL), which is derived from and replaces the suffix tree index STTD64 [1]. The results of our numerous experiments using the 24 human chromosomes data indicate that SMR outperforms the solution provided as part of the Vmatch [2] software tool. In searching for supermaximal repeats of size at least 10 bases, SMR is twice faster than Vmatch; for a minimum length of 25 bases, SMR is 7 times faster; and for repeats of length at least 200, SMR is about 9 times faster. We also study the cost of POL in terms of time and space requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 58.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Halachev, M., Shiri, N., Thamildurai, A.: Efficient and scalable indexing techniques for biological sequence data. In: Hochreiter, S., Wagner, R. (eds.) BIRD 2007. LNCS (LNBI), vol. 4414, pp. 464–479. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Vmatch: large scale sequence analysis software, http://www.vmtach.de

  3. Gusfield, D.: Algorithms on strings, trees and sequences: computer science and computational biology. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  4. Korf, B.R.: Human Genetics: A Problem-Based Approach. Blackwell, Boston (2000)

    Google Scholar 

  5. Watson, J., Hopkins, N., Roberts, J., Steitz, J., Weiner, A.: Molecular Biology of the Gene, 6th edn. Benjamin-Cummings, Menlo Park (2007)

    Google Scholar 

  6. Kurtz, S.: Reducing the space requirement of suffix trees. Software Practice and Experience 29(13), 1149–1171 (1999)

    Article  Google Scholar 

  7. Grossi, R., Vitter, J.S.: Compressed Suffix Arrays and Suffix Trees with Applications to Text Indexing and String Matching. SIAM Journal on Computing 35(2), 378–407 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: 41st IEEE Symposium on Foundations of Computer Science, pp. 390–398 (2000)

    Google Scholar 

  9. Valimaki, N., Gerlach, W., Dixit, K., Makinen, V.: Compressed suffix tree - a basis for genome-scale sequence analysis. Bioinformatics 23(5), 629–630 (2007)

    Article  Google Scholar 

  10. Hon, W.-K., Lam, T.W., Sung, W.-K., Tse, W.-L., Wong, C.-K., Yiu, S.-M.: Practical Aspects of Compressed Suffix Arrays and FM-index in Searching DNA Sequences. In: 6th Workshop on Algorithm Engineering and Experiments, pp. 31–38 (2004)

    Google Scholar 

  11. Kurtz, S., Schleiermacher, C.: REPuter: Fast Computation of Maximal Repeats in Complete Genomes. Bioinformatics 15, 426–427 (1999)

    Article  Google Scholar 

  12. RepeatMatch, http://mummer.sourceforge.net/manual/#repeat

  13. RepeatMasker, http://repeatmasker.org/

  14. Bedell, J.A., Korf, I., Gish, W.: MaskerAid: a Performance Enhancement to RepeatMasker. Bioinformatics 16(11), 1040–1041 (2000)

    Article  Google Scholar 

  15. Gotoh, O.: An Improved Algorithm for Matching Biological Sequences. Journal of Molecular Biology 162(3), 705–708 (1982)

    Article  Google Scholar 

  16. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix tree with enhances suffix arrays. Journal of Discrete Algorithms 2(1), 53–86 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Miki, B.L., Neelin, J.M.: DNA repeat lengths of erythrocyte chromatins differing in content of histones H1 and H5. Nucleic Acids Res. 8(3), 529–542 (1980)

    Article  Google Scholar 

  18. National Center for Biotechnology Information, http://www.ncbi.nim.nih.gov

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mourad Elloumi Josef Küng Michal Linial Robert F. Murphy Kristan Schneider Cristian Toma

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lian, C.N., Halachev, M., Shiri, N. (2008). Searching for Supermaximal Repeats in Large DNA Sequences. In: Elloumi, M., Küng, J., Linial, M., Murphy, R.F., Schneider, K., Toma, C. (eds) Bioinformatics Research and Development. BIRD 2008. Communications in Computer and Information Science, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70600-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70600-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70598-7

  • Online ISBN: 978-3-540-70600-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics