Abstract
This paper introduces a variety of graph structures on data. The properties of the local graphs around an instance are studied. A fast approach for generating local graphs and classifying by structurally connected instances is then sketched out.
This work is partly supported by the Natural Science Foundation of Sichuan Province, China (05JY029-021-2).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cook, D., Holder, L. (eds.): Mining Graph Data. John Wiley & Sons, New Jersey (2006)
Neuhaus, M., Bunke, H.: Self-organizing Maps for Learning the Edit Costs in Graph Matching. IEEE Trans. on Systems, Man and Cybernetics Part B 35, 503–514 (2005)
Pawlak, Z.: Some Issues on Rough Sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)
Carpineto, C., Romano, G.: Concept Data Analysis Theory and Applications. John Wiley & Sons, Chichester (2004)
Pan, W., Li, T.: From Analogy Reasoning to Instances Based Learning. In: Da Ruan (ed.) Applied Artificial Intelligence (FLINS 2006), pp. 177–184. World Scientific Publishing, Singapore (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pan, W. (2008). Fast Generation of Local Hasse Graphs for Learning from Structurally Connected Instances. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds) Rough Sets and Knowledge Technology. RSKT 2008. Lecture Notes in Computer Science(), vol 5009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79721-0_74
Download citation
DOI: https://doi.org/10.1007/978-3-540-79721-0_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79720-3
Online ISBN: 978-3-540-79721-0
eBook Packages: Computer ScienceComputer Science (R0)