[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Four Families of Binary Sequences with Low Correlation and Large Linear Complexity

  • Conference paper
Information Security and Cryptology (Inscrypt 2007)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4990))

Included in the following conference series:

Abstract

In this paper, four new families S 1, S 2, S 3 and S 4 of binary sequences of period 2n− 1 with low correlation are presented, where S 1, S 3 are defined for odd n, and S 2, S 4 for even n. The family S 1 has six-valued correlations, while S 2 and S 3 have either six-valued correlations or eight-valued correlations, and S 4 has either eight-valued or ten-valued, depending on the choice of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ziemer, R., Peterson, R.: Digital communication and spread spectrum communication systems. McMilian, New York (1985)

    Google Scholar 

  2. Gong, G.: New designs for signal sets with low cross correlation, balance property, and large linear span: GF(p) case. IEEE Trans. Inform. Theory 48, 2847–2867 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Sidelnikov, V.M.: On mutual correlation of sequences. Sov. Math. Doklady 12, 197–201 (1971)

    Google Scholar 

  4. Gold, R.: Maximal recursive sequences with 3-valued cross correlation function. IEEE Trans. Inform. Theory 14, 154–156 (1968)

    Article  MATH  Google Scholar 

  5. Boztas, S., Kumar, P.V.: Binary sequences with Gold-like correlation but larger linear span. IEEE Trans. Inform. Theory 40, 532–537 (1994)

    Article  MATH  Google Scholar 

  6. Udaya, P.: Polyphase and frequency hopping sequences obtained from finite rings, Ph. D. dissertation, Dept. Elec. Eng. Indian Inst. Technol., Kanpur (1992)

    Google Scholar 

  7. Kim, S.H., No, J.S.: New families of binary sequences with low correlation. IEEE Trans. Inform. Theory 49, 3059–3065 (2003)

    Article  MathSciNet  Google Scholar 

  8. Lidl, R., Niederreiter, H.: Finite fields, Encycl. Math. Appl., vol. 20. Addision Wesley, Reading (1983)

    Google Scholar 

  9. Golomb, S.W.: Shift register sequences, San Francisco, CA, Holden-Day (1967); revised edition: Aegean Park Press, Laguna Hills, CA (1982)

    Google Scholar 

  10. Wang, J.S., Qi, W.F.: Trace presentation of Bent sequence families. Journal of Communications 27, 8–13 (2006)

    Google Scholar 

  11. Wang, J.S., Qi, W.F.: Analysis of design interleaved ZCZ sequence family. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.) SETA 2006. LNCS, vol. 4086, pp. 129–140. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Wang, J.S., Qi, W.F.: A class of binary ZCZ sequence families constructed by extending period twice. Journal of Electronics(China) 24, 301–304 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dingyi Pei Moti Yung Dongdai Lin Chuankun Wu

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, JS., Qi, WF. (2008). Four Families of Binary Sequences with Low Correlation and Large Linear Complexity. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds) Information Security and Cryptology. Inscrypt 2007. Lecture Notes in Computer Science, vol 4990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79499-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79499-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79498-1

  • Online ISBN: 978-3-540-79499-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics