Abstract
We generalize the QSQR evaluation method to give a set-oriented depth-first evaluation method for Horn knowledge bases. The resulting procedure closely simulates SLD-resolution (to take advantages of the goal-directed approach) and highly exploits set-at-a-time tabling. Our generalized QSQR evaluation procedure is sound, complete, and tight. It does not use adornments and annotations. To deal with function symbols, our procedure uses iterative deepening search which iteratively increases term depth bound for atoms occurring in the computation. When the term depth bound is fixed, our evaluation procedure runs in polynomial time in the size of extensional relations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)
Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic sets and other strange ways to implement logic programs. In: Proceedings of PODS 1986, pp. 1–15. ACM Press, New York (1986)
Freire, J., Swift, T., Warren, D.S.: Taking I/O seriously: Resolution reconsidered for disk. In: Naish, L. (ed.) Proc. of ICLP 1997, pp. 198–212. MIT Press, Cambridge (1997)
Madalińska-Bugaj, E., Nguyen, L.A.: The long version of this paper (2008), http://www.mimuw.edu.pl/~nguyen/papers.html
Ramakrishnan, R., Srivastava, D., Sudarshan, S.: Efficient bottom-up evaluation of logic programs. In: Vandewalle, J. (ed.) The State of the Art in Computer Systems and Software Engineering, Kluwer Academic Publishers, Dordrecht (1992)
Rohmer, J., Lescouer, R., Kerisit, J.-M.: The Alexander method – a technique for the processing of recursive axioms in deductive databases. New Generation Computing 4(3), 273–285 (1986)
Sagonas, K.F., Swift, T.: An abstract machine for tabled execution of fixed-order stratified logic programs. ACM Trans. Program. Lang. Syst. 20(3), 586–634 (1998)
Sagonas, K.F., Swift, T., Warren, D.S.: XSB as an efficient deductive database engine. In: Snodgrass, R.T., Winslett, M. (eds.) Proceedings of the 1994 ACM SIGMOD Conference on Management of Data, pp. 442–453. ACM Press, New York (1994)
Shen, Y.-D., Yuan, L.-Y., You, J.-H., Zhou, N.-F.: Linear tabulated resolution based on Prolog control strategy. TPLP 1(1), 71–103 (2001)
Tamaki, H., Sato, T.: OLD resolution with tabulation. In: Shapiro, E. (ed.) ICLP 1986. LNCS, vol. 225, pp. 84–98. Springer, Heidelberg (1986)
Vieille, L.: Recursive axioms in deductive databases: The query/subquery approach. In: Proceedings of Expert Database Conf., pp. 253–267 (1986)
Vieille, L.: A database-complete proof procedure based on SLD-resolution. In: Proceedings of ICLP, pp. 74–103 (1987)
Vieille, L.: Recursive query processing: The power of logic. Theor. Comput. Sci. 69(1), 1–53 (1989)
Zhou, N.-F., Sato, T.: Efficient fixpoint computation in linear tabling. In: Proceedings of PPDP 2003, pp. 275–283. ACM Press, New York (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Madalińska-Bugaj, E., Nguyen, L.A. (2008). Generalizing the QSQR Evaluation Method for Horn Knowledge Bases. In: Nguyen, N.T., Katarzyniak, R. (eds) New Challenges in Applied Intelligence Technologies. Studies in Computational Intelligence, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79355-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-79355-7_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79354-0
Online ISBN: 978-3-540-79355-7
eBook Packages: EngineeringEngineering (R0)