[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Separation Results on the “One-More” Computational Problems

  • Conference paper
Topics in Cryptology – CT-RSA 2008 (CT-RSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4964))

Included in the following conference series:

Abstract

In 2001, Bellare, Namprempre, Pointcheval and Semanko introduced the notion of “one-more” computational problems. Since their introduction, these problems have found numerous applications in cryptography. For instance, Bellare et al. showed how they lead to a proof of security for Chaum’s RSA-based blind signature scheme in the random oracle model.

In this paper, we provide separation results for the computational hierarchy of a large class of algebraic “one-more” computational problems (e.g. the one-more discrete logarithm problem, the one-more RSA problem and the one-more static Computational Diffie-Hellman problem in a bilinear setting). We also give some cryptographic implications of these results and, in particular, we prove that it is very unlikely, that one will ever be able to prove the unforgeability of Chaum’s RSA-based blind signature scheme under the sole RSA assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barak, B.: How to Go Beyond the Black-Box Simulation Barrier. In: FOCS 2001, pp. 106–115 (2001)

    Google Scholar 

  2. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The 1-More-RSA-Inversion Problems and the Security of Chaum’s Blind Signature Scheme. J. Crypto 16, 185–215

    Google Scholar 

  3. Bellare, M., Neven, G.: Transitive Signatures: New Proofs and Schemes. IEEE IT 51(6), 2133–2151

    Google Scholar 

  4. Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Bellare, M., Sandhu, R.: The Security of Practical Two-Party RSA Signature Schemes, http://eprint.iacr.org/2001/060

  6. Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. J. Crypto 17(4), 297–319

    Google Scholar 

  8. Brown, D.: Irreducibility to the One-More Evaluation Problems: More May Be Less, http://eprint.iacr.org/2007/435

  9. Brown, D., Gallant, R.: The Static Diffie-Hellman Problem, http://eprint.iacr.org/2004/306

  10. Chaum, D.: Blind Signatures for Untraceable Payments. In: CRYPTO 1982, pp. 199–203 (1982)

    Google Scholar 

  11. Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

    Google Scholar 

  12. Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor Minimizing Both Transmission and Memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)

    Google Scholar 

  13. Micali, S., Rivest, R.L.: Transitive Signature Schemes. In: CT–RSA 2002, pp. 236–243 (2002)

    Google Scholar 

  14. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In: PKC 2001, pp. 104–118 (2001)

    Google Scholar 

  15. Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. J. Crypto (3), 361–396

    Google Scholar 

  17. Schnorr, C.-P.: Efficient Signature Generation by Smart Cards. J. Crypto (3), 161–174

    Google Scholar 

  18. Tompa, M., Woll, H.: Random Self-Reducibility and Zero Knowledge Interactive Proofs of Possession of Information. In: FOCS 1987, pp. 472–482 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tal Malkin

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bresson, E., Monnerat, J., Vergnaud, D. (2008). Separation Results on the “One-More” Computational Problems. In: Malkin, T. (eds) Topics in Cryptology – CT-RSA 2008. CT-RSA 2008. Lecture Notes in Computer Science, vol 4964. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79263-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79263-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79262-8

  • Online ISBN: 978-3-540-79263-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics