Abstract
In 2001, Bellare, Namprempre, Pointcheval and Semanko introduced the notion of “one-more” computational problems. Since their introduction, these problems have found numerous applications in cryptography. For instance, Bellare et al. showed how they lead to a proof of security for Chaum’s RSA-based blind signature scheme in the random oracle model.
In this paper, we provide separation results for the computational hierarchy of a large class of algebraic “one-more” computational problems (e.g. the one-more discrete logarithm problem, the one-more RSA problem and the one-more static Computational Diffie-Hellman problem in a bilinear setting). We also give some cryptographic implications of these results and, in particular, we prove that it is very unlikely, that one will ever be able to prove the unforgeability of Chaum’s RSA-based blind signature scheme under the sole RSA assumption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barak, B.: How to Go Beyond the Black-Box Simulation Barrier. In: FOCS 2001, pp. 106–115 (2001)
Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The 1-More-RSA-Inversion Problems and the Security of Chaum’s Blind Signature Scheme. J. Crypto 16, 185–215
Bellare, M., Neven, G.: Transitive Signatures: New Proofs and Schemes. IEEE IT 51(6), 2133–2151
Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)
Bellare, M., Sandhu, R.: The Security of Practical Two-Party RSA Signature Schemes, http://eprint.iacr.org/2001/060
Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)
Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. J. Crypto 17(4), 297–319
Brown, D.: Irreducibility to the One-More Evaluation Problems: More May Be Less, http://eprint.iacr.org/2007/435
Brown, D., Gallant, R.: The Static Diffie-Hellman Problem, http://eprint.iacr.org/2004/306
Chaum, D.: Blind Signatures for Untraceable Payments. In: CRYPTO 1982, pp. 199–203 (1982)
Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)
Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor Minimizing Both Transmission and Memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)
Micali, S., Rivest, R.L.: Transitive Signature Schemes. In: CT–RSA 2002, pp. 236–243 (2002)
Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In: PKC 2001, pp. 104–118 (2001)
Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005)
Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. J. Crypto (3), 361–396
Schnorr, C.-P.: Efficient Signature Generation by Smart Cards. J. Crypto (3), 161–174
Tompa, M., Woll, H.: Random Self-Reducibility and Zero Knowledge Interactive Proofs of Possession of Information. In: FOCS 1987, pp. 472–482 (1987)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bresson, E., Monnerat, J., Vergnaud, D. (2008). Separation Results on the “One-More” Computational Problems. In: Malkin, T. (eds) Topics in Cryptology – CT-RSA 2008. CT-RSA 2008. Lecture Notes in Computer Science, vol 4964. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79263-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-79263-5_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79262-8
Online ISBN: 978-3-540-79263-5
eBook Packages: Computer ScienceComputer Science (R0)