[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Minimum Maximal Matching Is NP-Hard in Regular Bipartite Graphs

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4978))

Abstract

Yannakakis and Gavril showed in [10] that the problem of finding a maximal matching of minimum size (MMM for short), also called Minimum Edge Dominating Set, is NP-hard in bipartite graphs of maximum degree 3 or planar graphs of maximum degree 3. Horton and Kilakos extended this result to planar bipartite graphs and planar cubic graphs [6]. Here, we extend the result of Yannakakis and Gavril in [10] by showing that MMM is NP-hard in the class of k-regular bipartite graphs for all k ≥ 3 fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alkan, A.: Current Trends in Economics: Theory and Applications, pp. 30–39. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  2. Balinski, M., Sönmez, T.: A Tale of Two Mechanisms: Student placement. Journal of Economic Theory 84, 73–94 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight edge dominating set problem. Discrete Applied Mathematics 118, 199–207 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gale, D., Shapley, I.S.: College admissions and the stability of marriage. Amer. Math. Montly 69, 9–14 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  5. Harary, F.: Graph Theory. Addison-Wesley, Reading (1994)

    Google Scholar 

  6. Horton, J.D., Kilakos, K.: Minimum edge dominating sets. SIAM J. Disc. Math. 6(3), 375–387 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hwang, S.F., Chang, G.J.: The edge domination problem. Discuss. Math. Graph. Theory 15(1), 51–57 (1995)

    MATH  MathSciNet  Google Scholar 

  8. Mitchell, S.L., Hedetniemi, S.T.: Edge domination in trees. In: Proc. of the 8th Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), pp. 489–509 (1977)

    Google Scholar 

  9. Srinivasan, A., Madhukar, K., Nagavamsi, P., Pandu Rangan, C., Chang, M.-S.: Edge domination on bipartite permutation graphs and cotriangulated graphs. Inform. Process. Lett. 56(3), 165–171 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38, 364–372 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manindra Agrawal Dingzhu Du Zhenhua Duan Angsheng Li

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demange, M., Ekim, T. (2008). Minimum Maximal Matching Is NP-Hard in Regular Bipartite Graphs. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2008. Lecture Notes in Computer Science, vol 4978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79228-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79228-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79227-7

  • Online ISBN: 978-3-540-79228-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics