[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Complementarity Systems in Constrained Steady-State Optimal Control

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4981))

Included in the following conference series:

  • 2089 Accesses

Abstract

This paper presents a solution to the problem of regulating a general nonlinear dynamical system to a time-varying economically optimal operating point. The system is characterized by a set of exogenous inputs as an abstraction of time-varying loads and disturbances. The economically optimal operating point is implicitly defined as a solution to a given constrained convex optimization problem, which is related to steady-state operation. The system outputs and the exogenous inputs represent respectively the decision variables and the parameters in the optimization problem. Complementarity systems are employed as building blocks to construct a dynamic controller that solves the considered regulation problem. The complementarity solution arises naturally via a dynamic extension of the Karush-Kuhn-Tucker optimality conditions for the steady-state related optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van der Schaft, A.J., Schumacher, J.M.: The complementarity-slackness class of hybrid systems. Mathematics of Control, Signals, and Systems 9, 266–301 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. van der Schaft, A.J., Schumacher, J.M.: Complementarity modeling of hybrid systems. IEEE Transactions on Automatic Control 43(3), 483–490 (1998)

    Article  MATH  Google Scholar 

  3. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Linear complementarity systems. SIAM Journal on Applied Mathematics 60(4), 1234–1269 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brogliato, B.: Some perspectives on analysis and control of complementarity systems. IEEE Transactions on Automatic Control 48, 918–935 (2003)

    Article  MathSciNet  Google Scholar 

  5. Çamlibel, M.K., Pang, J.S., Shen, J.: Lyapunov stability of complementarity and extended systems. SIAM Journal on Optimization 17(4), 1056–1101 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Schumacher, J.M.: Complementarity systems in optimization. Mathematical programming B 101, 263–296 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  8. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  9. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Projected dynamical systems in a complementarity formalism. Operations Research Letters 27(2), 83–91 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. Systems and Control Letters 55, 45–51 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jokic, A.: Price-based optimal control of electrical power systems. PhD thesis, Eindhoven University of Technology, The Netherlands (2007)

    Google Scholar 

  12. Kyparisis, J.: On uniqueness of Kuhn-Tucker multipliers in nonlinear programming. Mathematical Programming 32, 242–246 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sontag, E.D.: Nonlinear regulation: the piecewise linear approach. IEEE Transactions on Automatic Control 26(2), 346–357 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Transactions on Automatic Control 43(4), 555–559 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gonçalves, J.M., Megretski, A., Dahleh, M.A.: Global analysis of piecewise linear systems using impact maps and surface Lyapunov functions. IEEE Transactions on Automatic Control 48(12), 2089–2106 (2003)

    Article  Google Scholar 

  16. Prajna, S., Papachristodoulou, A.: Analysis of swiched and hybrid systems - beyond piecewise quadratic methods. In: American Control Conference, USA (2003)

    Google Scholar 

  17. Pomerol, J.C.: The boundedness of the Lagrange multipliers set and duality in mathematical programming. Zeitschrift für Operations Research 25, 191–204 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. LaSalle, J.P.: The stability of dynamical systems. In: SIAM, (ed.) Regional Conference Series in Applied Mathematics. Philadelphia, vol. 25 (1976)

    Google Scholar 

  19. Megretski, A., Rantzer, A.: System analysis via integral quadratic constraints. IEEE Transactions on Automatic Control 42(6), 819–830 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stoft, S.: Power System Economics: Designing Markets for Electricity. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Magnus Egerstedt Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jokic, A., Lazar, M., van den Bosch, P.P.J. (2008). Complementarity Systems in Constrained Steady-State Optimal Control. In: Egerstedt, M., Mishra, B. (eds) Hybrid Systems: Computation and Control. HSCC 2008. Lecture Notes in Computer Science, vol 4981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78929-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78929-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78928-4

  • Online ISBN: 978-3-540-78929-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics