[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improving Triangular Preconditioner Updates for Nonsymmetric Linear Systems

  • Conference paper
Large-Scale Scientific Computing (LSSC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4818))

Included in the following conference series:

Abstract

We present an extension of an update technique for preconditioners for sequences of non-symmetric linear systems that was proposed in [5]. In addition, we describe an idea to improve the implementation of the update technique. We demonstrate the superiority of the new approaches in numerical experiments with a model problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baglama, J., et al.: Adaptively preconditioned GMRES algorithms. SIAM J. Sci. Comput. 20, 243–269 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzi, M., Bertaccini, D.: Approximate inverse preconditioning for shifted linear systems. BIT 43, 231–244 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergamaschi, L., et al.: Quasi-Newton Preconditioners for the Inexact Newton Method. ETNA 23, 76–87 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Bertaccini, D.: Efficient preconditioning for sequences of parametric complex symmetric linear systems. ETNA 18, 49–64 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Duintjer Tebbens, J., Tůma, M.: Preconditioner updates for solving sequences of large and sparse nonsymmetric linear systems. SIAM J. Sci. Comput. 29, 1918–1941 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kelley, C.T.: Iterative methods for linear and nonlinear equations. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  7. Loghin, D., Ruiz, D., Touhami, A.: Adaptive preconditioners for nonlinear systems of equations. J. Comput. Appl. Math. 189, 326–374 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Meurant, G.: On the incomplete Cholesky decomposition of a class of perturbed matrices. SIAM J. Sci. Comput. 23, 419–429 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Morales, J.L., Nocedal, J.: Automatic preconditioning by limited-memory quasi-Newton updates. SIAM J. Opt. 10, 1079–1096 (2000)

    Article  MATH  Google Scholar 

  10. Parks, M.L., et al.: Recycling Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput. 28, 1651–1674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 12, 631–644 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duintjer Tebbens, J., Tůma, M. (2008). Improving Triangular Preconditioner Updates for Nonsymmetric Linear Systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78827-0_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78827-0_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78825-6

  • Online ISBN: 978-3-540-78827-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics