Abstract
We present an extension of an update technique for preconditioners for sequences of non-symmetric linear systems that was proposed in [5]. In addition, we describe an idea to improve the implementation of the update technique. We demonstrate the superiority of the new approaches in numerical experiments with a model problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baglama, J., et al.: Adaptively preconditioned GMRES algorithms. SIAM J. Sci. Comput. 20, 243–269 (1998)
Benzi, M., Bertaccini, D.: Approximate inverse preconditioning for shifted linear systems. BIT 43, 231–244 (2003)
Bergamaschi, L., et al.: Quasi-Newton Preconditioners for the Inexact Newton Method. ETNA 23, 76–87 (2006)
Bertaccini, D.: Efficient preconditioning for sequences of parametric complex symmetric linear systems. ETNA 18, 49–64 (2004)
Duintjer Tebbens, J., Tůma, M.: Preconditioner updates for solving sequences of large and sparse nonsymmetric linear systems. SIAM J. Sci. Comput. 29, 1918–1941 (2007)
Kelley, C.T.: Iterative methods for linear and nonlinear equations. SIAM, Philadelphia (1995)
Loghin, D., Ruiz, D., Touhami, A.: Adaptive preconditioners for nonlinear systems of equations. J. Comput. Appl. Math. 189, 326–374 (2006)
Meurant, G.: On the incomplete Cholesky decomposition of a class of perturbed matrices. SIAM J. Sci. Comput. 23, 419–429 (2001)
Morales, J.L., Nocedal, J.: Automatic preconditioning by limited-memory quasi-Newton updates. SIAM J. Opt. 10, 1079–1096 (2000)
Parks, M.L., et al.: Recycling Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput. 28, 1651–1674 (2006)
van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 12, 631–644 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Duintjer Tebbens, J., Tůma, M. (2008). Improving Triangular Preconditioner Updates for Nonsymmetric Linear Systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78827-0_85
Download citation
DOI: https://doi.org/10.1007/978-3-540-78827-0_85
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78825-6
Online ISBN: 978-3-540-78827-0
eBook Packages: Computer ScienceComputer Science (R0)