[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Domination in Geometric Intersection Graphs

  • Conference paper
LATIN 2008: Theoretical Informatics (LATIN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4957))

Included in the following conference series:

Abstract

For intersection graphs of disks and other fat objects, polynomial-time approximation schemes are known for the independent set and vertex cover problems, but the existing techniques were not able to deal with the dominating set problem except in the special case of unit-size objects. We present approximation algorithms and inapproximability results that shed new light on the approximability of the dominating set problem in geometric intersection graphs. On the one hand, we show that for intersection graphs of arbitrary fat objects, the dominating set problem is as hard to approximate as for general graphs. For intersection graphs of arbitrary rectangles, we prove APX-hardness. On the other hand, we present a new general technique for deriving approximation algorithms for various geometric intersection graphs, yielding constant-factor approximation algorithms for r-regular polygons, where r is an arbitrary constant, for pairwise homothetic triangles, and for rectangles with bounded aspect ratio. For arbitrary fat objects with bounded ply, we get a (3 + ε)-approximation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret. Comput. Sci. 237(1-2), 123–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-Factor Approximation for Minimum-Weight (Connected) Dominating Sets in Unit Disk Graphs. In: Díaz, J., Jansen, K., Rolim, J.D., Zwick, U. (eds.) Proc. APPROX-RANDOM 2006. LNCS, vol. 4110, pp. 3–14. Springer-Verlag, Berlin/Heidelberg (2006)

    Google Scholar 

  3. Baker, B.S.: Approximation Algorithms for NP-Complete Problems on Planar Graphs. J. ACM 41(1), 153–180 (1994)

    MATH  Google Scholar 

  4. Bar-Yehuda, R., Even, S.: A Linear-Time Approximation Algorithm for the Weighted Vertex Cover Problem. J. Algorithms 2(2), 198–203 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brönnimann, H., Goodrich, M.T.: Almost Optimal Set Covers in Finite VC-Dimension. Discrete Comput. Geometry 14(4), 463–479 (1995)

    Article  MATH  Google Scholar 

  6. Chan, T.M.: Polynomial-time Approximation Schemes for Packing and Piercing Fat Objects. J. Algorithms 46(2), 178–189 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, M.-S.: Efficient Algorithms for the Domination Problems on Interval and Circular-Arc Graphs. SIAM J. Comput. 27(6), 1671–1694 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chlebík, M., Chlebíková, J.: Approximation Hardness of Dominating Set Problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 192–203. Springer-Verlag, Berlin/Heidelberg (2004)

    Google Scholar 

  9. Chlebík, M., Chlebíková, J.: The Complexity of Combinatorial Optimization Problems on d-Dimensional Boxes. SIAM J. Discrete Math. 21(1), 158–169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit Disk Graphs. Discrete Math. 86(1–3), 165–177 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clarkson, K.L., Varadarajan, K.R.: Improved Approximation Algorithms for Geometric Set Cover. Discrete Comput. Geometry 37(1), 43–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Efrat, A., Sharir, M.: The Complexity of the Union of Fat Objects in the Plane. Discrete Comput. Geometry 23(2), 171–189 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time Approximation Schemes for Geometric Intersection Graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Even, G., Rawitz, D., Sharar, S.: Hitting Sets when the VC-Dimension is Small. Inform. Process. Lett. 95(2), 358–362 (2005)

    Article  MathSciNet  Google Scholar 

  15. Feige, U.: A Threshold of ln n for Approximating Set Cover. J. ACM 45(4), 634–652 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Hochbaum, D.S.: Approximation Algorithms for the Set Covering and Vertex Cover Problems. SIAM J. Comput. 11(3), 555–556 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hochbaum, D.S., Maass, W.: Approximation Schemes for Covering and Packing Problems in Image Processing and VLSI. J. ACM 32(1), 130–136 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Hunt III, D.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric Graphs. J. Algorithms 26(2), 238–274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kedem, K., Livne, R., Pach, J., Sharir, M.: On the Union of Jordan Regions and Collision-Free Translational Motion Amidst Polygonal Obstacles. Discrete Comput. Geometry 1, 59–70 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, S.-J., Kostochka, A., Nakprasit, K.: On the Chromatic Number of Intersection Graphs of Convex Sets in the Plane. Electr. J. Combinatorics 11, #R52 (2004)

    Google Scholar 

  21. Koebe, P.: Kontaktprobleme der konformen Abbildung. Ber. Ver. Sächs. Ak. Wiss. Leipzig, Math.-Phys. Kl. 88, 141–164 (1936)

    Google Scholar 

  22. Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple Heuristics for Unit Disk Graphs. Networks 25, 59–68 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marx, D.: Parameterized Complexity of Independence and Domination on Geometric Graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 154–165. Springer-Verlag, Berlin/Heidelberg (2006)

    Chapter  Google Scholar 

  24. Miller, G.L., Teng, S.-H., Thurston, W., Vavasis, S.A.: Separators for Sphere-Packings and Nearest Neighbor Graphs. J. ACM 44(1), 1–29 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Nieberg, T., Hurink, J.L.: A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 296–306. Springer-Verlag, Berlin/Heidelberg (2006)

    Chapter  Google Scholar 

  26. van Leeuwen, E.J.: Better Approximation Schemes for Disk Graphs. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 316–327. Springer-Verlag, Berlin/Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Sany Laber Claudson Bornstein Loana Tito Nogueira Luerbio Faria

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erlebach, T., van Leeuwen, E.J. (2008). Domination in Geometric Intersection Graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78773-0_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78772-3

  • Online ISBN: 978-3-540-78773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics