[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Facilitating Query Decomposition in Query Language Modeling by Association Rule Mining Using Multiple Sliding Windows

  • Conference paper
Advances in Information Retrieval (ECIR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4956))

Included in the following conference series:

Abstract

This paper presents a novel framework to further advance the recent trend of using query decomposition and high-order term relationships in query language modeling, which takes into account terms implicitly associated with different subsets of query terms. Existing approaches, most remarkably the language model based on the Information Flow method are however unable to capture multiple levels of associations and also suffer from a high computational overhead. In this paper, we propose to compute association rules from pseudo feedback documents that are segmented into variable length chunks via multiple sliding windows of different sizes. Extensive experiments have been conducted on various TREC collections and our approach significantly outperforms a baseline Query Likelihood language model, the Relevance Model and the Information Flow model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large database. In: Proceedings of SIGMOD 1993, pp. 207–216 (1993)

    Google Scholar 

  2. Allan, J., Wade, C., Bolivar, A.: Retrieval and novelty detection at the sentence level. In: Proceedings of SIGIR 2003, Canada, August 2003, pp. 314–321 (2003)

    Google Scholar 

  3. Bai, J., Song, D., Bruza, P., Nie, J.-Y., Cao, G.: Query expansion using term relationships language models for information retrieval. In: Proceedings of CIKM 2005, Bremen, Germany (November 2005)

    Google Scholar 

  4. Balasubramanian, N., Allan, J., Croft, W.B.: A comparison of sentence retrieval techniques. In: Proceedings of SIGIR Poster Sessions, Amsterdam (July 2007)

    Google Scholar 

  5. Cao, G., Nie, J., Bai, J.: Integrating term relationships into language models. In: Proceedings of SIGIR 2005, pp. 298–305 (2005)

    Google Scholar 

  6. Gao, J., Nie, J., Wu, G., Cao, G.: Dependence language model for information retrieval. In: Proceedings of SIGIR 2004, pp. 170–177 (2004)

    Google Scholar 

  7. Hahsler, M., Buchta, C., Hornik, K.: Selective association rule generation. Computational Statistics 23 (2008)

    Google Scholar 

  8. Hipp, J., Guntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining - a general survey and comparison. In: SIGKDD Exploration, pp. 1–58 (2000)

    Google Scholar 

  9. Lafferty, J., Zhai, C.: Document Language Models, Query Models, and Risk Minimization for Information Retrieval. In: Proceedings of SIGIR 2001, pp. 111–119. ACM Press, New York (2001)

    Chapter  Google Scholar 

  10. Lavrenko, V., Croft, W.B.: Relevance-based language models. In: Proceedings of SIGIR 2001, New York, pp. 120–127 (2001)

    Google Scholar 

  11. Liu, X., Croft, W.B.: Passage retrieval based on language models. In: Proceedings of CIKM 2002 (November 2002)

    Google Scholar 

  12. Metzler, D., Croft, W.B.: Latent concept expansion using markov random fields. In: Proceedings of SIGIR 2007 (July 2007)

    Google Scholar 

  13. Pickens, J., MacFarlane, A.: Term context models for information retrieval. In: Proceedings of CIKM 2006, November 2006, pp. 559–566 (2006)

    Google Scholar 

  14. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the SIGMOD 1993, Washington D.C., May 1993, pp. 207–216 (1993)

    Google Scholar 

  15. Song, D., Bruza, P.D.: Towards context sensitive information inference. Journal of the American Society for Information Science and Tecnology 54(3), 321–334 (2003)

    Article  Google Scholar 

  16. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: Proceedings of SIGIR 2001, pp. 334–342 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Craig Macdonald Iadh Ounis Vassilis Plachouras Ian Ruthven Ryen W. White

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, D., Huang, Q., Rüger, S., Bruza, P. (2008). Facilitating Query Decomposition in Query Language Modeling by Association Rule Mining Using Multiple Sliding Windows. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds) Advances in Information Retrieval. ECIR 2008. Lecture Notes in Computer Science, vol 4956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78646-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78646-7_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78645-0

  • Online ISBN: 978-3-540-78646-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics