[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Quantum Simulataneous Recurrent Networks for Content Addressable Memory

  • Chapter
Quantum Inspired Intelligent Systems

Summary

We explore a model for a quantum Hopfield artificial neural network, in which qubits are prepared in an initial state and allowed to evolve to steady state. We derive the equations for finding their stable states, by minimizing the Lyapunov energy. We apply the equations first to the cytoskeleton of a biological neuron, where the qubits are microtubulins in a microtubule. Our method can reproduce classical calculations made earlier by Tuszynski et al., but because it is a fully quantum method can also explore the possibility that an artificial computing structure based on an array of tubulins can act as a quantum computer. We then derive a method for training the quantum network to converge to a stable target pattern, given an input pattern, and show that a spatial array of qubits can be trained to perform the CNOT, which with a rotation is a universal quantum gate. This means that a large enough array can in principle be trained to do any calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Behrman E C, Nash L R, Steck J E, Chandrashekar V G, Skinner S R (2000) Information Sciences 128:257-269

    Article  MATH  MathSciNet  Google Scholar 

  2. DeGaris H, Sriram R, Zhang Z (2003) Proceedings of the International Joint Conference on Neural Networks 4:2589-2593

    Google Scholar 

  3. Bandyopadhyay S, Menon L, Kouklin N, Williams P F, Ianno N J (2002) Smart Mater. Struc. 11:761-766

    Article  Google Scholar 

  4. Ezhov A (2003) Proceedings of SPIE 5128:107-119

    Article  Google Scholar 

  5. Resconi G, van del Wal A J (2002)Information Sciences 142:249-273

    Article  MATH  Google Scholar 

  6. Allauddin R, Gaddam K, Behrman E C, Steck J E, Skinner S R (2002) Proceedings of the International Joint Conference on Neural Networks 3:2732-2737

    Google Scholar 

  7. Hopfield J J (1982) Proceedings of the National Academy of Sciences USA 79: 2554-2558

    Article  MathSciNet  Google Scholar 

  8. Haykin S (1999) Neural Networks: a Comprehensive Foundation. Prentice Hall, New York

    MATH  Google Scholar 

  9. Abu-Mostafa Y S, St. Jacques J-M (1985) IEEE Trans. Information Theory IT31:461-464

    Article  Google Scholar 

  10. Tuszynski J A, Hameroff S, Hurylak P (1998) Phil Trans R. Soc. Lond. A 356:1897-1926

    Article  Google Scholar 

  11. Hagan S, Hameroff S R, Tuszynski J A (2002) Phys. Rev. E 65:061901-11

    Article  Google Scholar 

  12. Werbos P (1997) Handbook of Neural Computation, release 97/1, A2.3:2

    Google Scholar 

  13. Behrman E C, Jongeward G A, Wolynes P G (1983) J. Chem. Phys. 79:6277-6281

    Article  Google Scholar 

  14. Behrman E C, Gaddam K, Steck J E, Skinner S R Microtubulins as a quantum Hopfield network. In Tuszynski JA (ed.) The Emerging Physics of Consciousness. Springer Verlag, 2006. This paper was written after, but published before, the present article, and contains an expanded and extended version of the method and results in section ??. Though published subsequently, we consider the present work to be the foundational paper.

    Google Scholar 

  15. Kac M (1968) Mathematical mechanisms of phase transitions. In Chretien M, Gross E, Deser S (eds.) Statistical Physics: Phase transitions and superfluidity. 1:241-305

    Google Scholar 

  16. Feynman R P, Hibbs A R (1965) Quantum Mechanics and Path Integrals. McGraw-Hill, New York

    MATH  Google Scholar 

  17. Polyak M (2004) arXiv: math.GT/0406251

    Google Scholar 

  18. Luenberger D G (1984) Linear and Nonlinear Programming. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  19. Zanardi P, Rasetti M (1997) arXiv: quant-ph/9705044

    Google Scholar 

  20. Nielsen M A, Chuang I L (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  21. Grover L K (1996) Proceedings of the 28th Annual ACM Symposium on Theory of Computing. ACM, New York, pp.212-9.

    Google Scholar 

  22. Shor P W (1997) SIAM J. Computing 26: 1484

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Allauddin, R., Boehmer, S., Behrman, E.C., Gaddam, K., Steck, J.E. (2008). Quantum Simulataneous Recurrent Networks for Content Addressable Memory. In: Nedjah, N., Coelho, L.d.S., Mourelle, L.d.M. (eds) Quantum Inspired Intelligent Systems. Studies in Computational Intelligence, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78532-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78532-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78531-6

  • Online ISBN: 978-3-540-78532-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics