Abstract
We construct a model without precipitous ideals but so that for each \(\tau< \aleph_3\) there is a normal ideal over \(\aleph_1\) with generic ultrapower wellfounded up to the image of τ.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Donder, H.-D., Koepke, P.: On the consistency strength of ‘Accessible’ Jonsson Cardinals and of the Chang Conjecture, APAL 25, pp. 233–261 (1983)
Foreman, M.: Ideals and Generic Elementary Embeddings, in Handbook of Set Theory (to appear)
Gitik, M.: On normal precipitous ideals, www.math.tau.ac.il/~gitik
Jech, T.: Set Theory, 3rd ed.
Jech, T., Prikry, K.: On ideals of sets and the power set operation. Bull. Amer. Math. Soc. 82(4), 593–595 (1976)
Jech, T., Shelah, S.: A note on canonical functions. Israel J. Math. 68, 376–380 (1989)
Larson, P., Shelah, S.: Bounding by canonical functions, with CH. J. Math. Logic 3(2), 193–215 (2003)
Mitchell, W.: The covering lemma, in Handbook of Set Theory (to appear)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gitik, M., Magidor, M. (2008). On Partially Wellfounded Generic Ultrapowers. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds) Pillars of Computer Science. Lecture Notes in Computer Science, vol 4800. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78127-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-78127-1_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78126-4
Online ISBN: 978-3-540-78127-1
eBook Packages: Computer ScienceComputer Science (R0)