Abstract
A DNA Memory with over 10 million (16.8M) addresses was achieved. The data embedded into a unique address was correctly extracted through addressing processes based on the nested PCR. The limitation of the scaling-up of the proposed DNA memory is discussed by using a theoretical model based on combinatorial optimization with some experimental restrictions. The results reveal that the size of the address space of the DNA memory presented here may be close to the theoretical limit. The high-capacity DNA memory can be also used in cryptography (steganography) or DNA ink.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Science 266, 1021–1024 (1994)
Lipton, R.: DNA solution of hard combinatorial problems. Science 268, 542–545 (1995)
Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-Variable 3-SAT Problem on a DNA Computer. Science 296, 499–502 (2002)
Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)
Wong, P.C., Wong, K.K., Foote, H.: Organic Data Memory Using the DNA Approach. Communications of the ACM 46(1), 95–98 (2003)
Baum, E.B.: Building an Associative Memory Vastly Larger Than the Brain. Science 268, 583–585 (1995)
Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wickham, G.S.: Experimental Construction of Very Large Scale DNA Databases with Associative Search Capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA Computing. LNCS, vol. 2340, pp. 231–247. Springer, Heidelberg (2002)
Neel, A., Garzon, M.H., Penumatsa, P.: Improving the Quality of Semantic Retrieval in DNA-Based Memories with Learning. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 18–24. Springer, Heidelberg (2004)
Chen, J., Deaton, R., Wang, Y.Z.: A DNA-based memory with in vitro learning and associative recall. Natural Computing 4(2), 83–101 (2005)
Kashiwamura, S., Yamamoto, M., Kameda, A., Shiba, T., Ohuchi, A., Hierarchical, D.N.A.: Memory based on Nested PCR. In: Hagiya, M., Ohuchi, A. (eds.) DNA Computing. LNCS, vol. 2568, pp. 112–123. Springer, Heidelberg (2003)
Kashiwamura, S., Yamamoto, M., Kameda, A., Shiba, T., Ohuchi, A.: Potential for enlarging DNA memory: The validity of experimental operations of scaled-up nested primer molecular memory. BioSystems 80, 99–112 (2005)
Kashiwamura, S., Yamamoto, M., Kameda, A., Ohuchi, A.: Experimental Challenge of Scaled-up Hierarchical DNA Memory Expressing a 10,000-Address Space. In: Preliminary Proceeding of 11th International Meeting on DNA Based Computers. vol. 396 (2005)
Clelland, C.T., Risca, V., Bancroft, C.: Hiding message in DNA microdots. Nature 399, 533–544 (1999)
Hashiyada, M.: Development of Biometric DNA Ink for Authentication Security. Tohoku J. Exp. Med. 204, 109–117 (2004)
Hashiyada, M., Itakura, Y., Nagashima, T., Nata, M., Funayama, M.: Polymorphism of 17 STRs by multiplex analysis in Japanese population. Forensic Sci. Int. 133, 250–253 (2003)
Itakura, Y., Hashiyada, M., Nagashima, T., Tsuji, S.: Proposal on Personal Identifiers Generated from the STR Information of DNA. Int. J. Information Security 1, 149–160 (2002)
Kameda, A., Kashiwamura, S., Yamamoto, M., Ohuchi, A., Hagiya, M.: Combining randomness and a high-capacity DNA memory. DNA13 (submitted 2007)
Kashiwamura, S., Kameda, A., Yamamoto, M., Ohuchi, A.: Two-Step Search for DNA Sequence Design. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences E87-A (6), 1446–1453 (2004)
Deaton, R., Murphy, R.C., Garzon, M., Franceschetti, D.R., Stevens Jr, S.E.: Good Encoding for DNA-Based Solutions to Combinatorial Problems. In: Landweber, L.F., Baum, E.B. (eds.) DNA Based Computers II. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 44, pp. 247–258 (1999)
Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of nucleic acid sequences for DNA computing based on a thermodynamic approach. Nucleic Acids Research 33, 903–911 (2005)
Tulpan, D.C., Hoos, H.H., Condon, A.: Stochastic Local Search Algorithms for DNA word Design. In: Hagiya, M., Ohuchi, A. (eds.) DNA Computing. LNCS, vol. 2568, pp. 229–241. Springer, Heidelberg (2003)
Lyngso, L.B., Zuker, M., Pedersen, C.N.: Fast evaluation of internal loops in RNA secondary structure prediction. Bioinformatics 15, 440–445 (1999)
SantaLucia, J., Allawi, H.T., Seneviratne, P.A.: Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35, 3555–3562 (1996)
Sugimoto, N., Nakano, S., Yoneyama, M., Honda, K.: Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Research 24, 4501–4505 (1996)
Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9, 133–148 (1981)
McPherson, M.J., Hames, B.D., Taylor, G.R.: PCR A Practical Approach. IRL Press (1995)
McPherson, M.J., Hames, B.D., Taylor, G.R.: PCR2 A Practical Approach. IRL Press (1993)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yamamoto, M., Kashiwamura, S., Ohuchi, A. (2008). DNA Memory with 16.8M Addresses. In: Garzon, M.H., Yan, H. (eds) DNA Computing. DNA 2007. Lecture Notes in Computer Science, vol 4848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77962-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-77962-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77961-2
Online ISBN: 978-3-540-77962-9
eBook Packages: Computer ScienceComputer Science (R0)