Abstract
In the last 15 years periodic timetable problems had been found much interest in combinatorial optimization. The results presented in [5, 9, 2, 3, 6, 7, 1] are based on a periodic event scheduling model published by Serafini and Ukovich [10].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kolonko, M. and Nachtigall, K. and Voget, S. (1996) Exponat der Universität Hildesheim auf der CeBit 96: Optimierung von integralen Taktfahrplänen mit genetischen Algorithmen Hildesheimer Informatik-Berichte 8/96
Liebchen, C. (2006) Periodic Timetable Optimization in Public Transport Dissertation, Institut für Mathematik, TU Berlin
Lindner, T. (2000) Train Shedule Optimization in Public Rail Transport Dissertation, TU Braunschweig
Nachtigall, K. (1996) Periodic Network Optimization with different Arc Frequencies Discrete Applied Mathematics 69:1–17
Nachtigall, K. (1998) Periodic Network Optimization and Fixed Interval Timetables Habilitationsschrift, Universität Hildesheim Institutsbericht (IB) 112-99/02, Deutsches Institut für Luft-und Raumfahrt, Braunschweig
Odijk, M.(1994) Construction of Periodic Timetables-Part I: A Cutting Plane Algorithm Technical Report, Department of Mathematics and Computer Science, University of Technology. Delft, The Netherlands
Peeters, L.W.P. (2003) Cyclic Railway Timetable Optimization Dissertation, Erasmus Research Institut of Management, Erasmus University, Rotterdam
Schrijver, A. (1986) Theory of Linear and Integer Programming, J. Wiley and Sons, Chichester New York Brisbane Toronto Singapore
Schrijver, A. and Steenbeek, A. (1994) Dienstregelingontwikkeling voor Railned Technical Report, Centrum voor Wiskunde en Informatica
Serafini, P. and Ukovich, W. (1989) A Mathematical Model for Periodic Scheduling Problems SIAM J. Discrete Math 4/2:550–581
Weigand, W. (1983) The Man-Maschine Dialogue and Timetable Planning Rail International 3:8–25
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nachtigall, K., Opitz, J. (2008). A Modulo Network Simplex Method for Solving Periodic Timetable Optimisation Problems. In: Kalcsics, J., Nickel, S. (eds) Operations Research Proceedings 2007. Operations Research Proceedings, vol 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77903-2_71
Download citation
DOI: https://doi.org/10.1007/978-3-540-77903-2_71
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77902-5
Online ISBN: 978-3-540-77903-2
eBook Packages: Business and EconomicsBusiness and Management (R0)