[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Aesthetics-Based Automatic Home Video Skimming System

  • Conference paper
Advances in Multimedia Modeling (MMM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4903))

Included in the following conference series:

Abstract

In this paper, we propose an automatic home video skimming system based on media aesthetics. Unlike other similar works, the proposed system considers video editing theory and realizes the idea of computational media aesthetics. Given a home video and a incidental background music, this system generates a music video (MV) style skimming video automatically, with consideration of video quality, music tempo, and the editing theory. The background music is analyzed so that visual rhythm caused by shot changes in the skimming video are synchronous with the music tempo. Our work focuses on the rhythm over aesthetic features, which is more recognizable and more suitable to describe the relationship between video and audio. Experiments show that the generated skimming video is effective in representing the original input video, and the audio-video conformity is satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ma, Y.F., Hua, X.S., Lu, L., Zhang, H.J.: A generic framework of user attention model and its application in video summarization. IEEE Transactions on Multimedia 7(5), 907–919 (2005)

    Article  Google Scholar 

  2. Hanjalic, A.: Multimodal approach to measuring excitement in video. In: ICME (2003)

    Google Scholar 

  3. Foote, J., Cooper, M., Girgensohn, A.: Creating music videos using automatic media analysis. In: ACM international conference on Multimedia (2002)

    Google Scholar 

  4. Hua, X.S., Lu, L., Zhang, H.J.: Optimization-based automated home video editing system. IEEE Transactions on CSVT 14(5), 572–583 (2004)

    Google Scholar 

  5. Lee, S.H., Yeh, C.H., Kuo, C.C.: Home video content analysis for MV-style video generation. In: International Symposium on Electronic Imaging (2005)

    Google Scholar 

  6. Nack, F., Dorai, C., Venkatesh, S.: Computational media aesthetics: finding meaning beautiful. Multimedia, IEEE 8(4), 10–12 (2001)

    Article  Google Scholar 

  7. Mulhem, P., Kankanhalli, M., Yi, J., Hassan, H.: Pivot vector space approach for audio-video mixing. Multimedia, IEEE 10(2), 28–40 (2003)

    Article  Google Scholar 

  8. Goodman, R., McGrath, P.: Editing Digital Video. McGraw-Hill/TAB Electronics (2002)

    Google Scholar 

  9. Chandler, G.: Cut by cut: editing your film or video. Michael Wiese (2004)

    Google Scholar 

  10. Communication Production Technology: The Pan Shot, http://www.saskschools.ca/curr_content/cpt/projects/musicvideo/panshots.html

  11. Zettl, H.: Sight, sound, motion: applied media aesthetics. Wadsworth (2004)

    Google Scholar 

  12. Loehr, M.: Aesthetics of editing, http://www.videomaker.com/article/2645/

  13. Tong, H., Li, M., Zhang, H., Zhang, C.: Blur detection for digital images using wavelet transform. In: ICME (2004)

    Google Scholar 

  14. Hanjalic, A.: Shot-boundary detection: unraveled and resolved? IEEE Transactions on CSVT 12(2), 90–105 (2002)

    Google Scholar 

  15. Dibos, F., Jonchery, C., Koeper, G.: Camera motion estimation through quadratic optical flow approximation. Technical report, Universite de PARIS V DAUPHINE (2005)

    Google Scholar 

  16. Viola, P., Jones, M.J.: Robust real-time face detection. IJCV 57(2), 137–154 (2004)

    Article  Google Scholar 

  17. Masri, P.: Computer modeling of sound for transformation and synthesis of musical signal. PhD thesis, University of Bristol (1996)

    Google Scholar 

  18. Dixon, S.: Onset detection revisited. In: International Conference on Digital Audio Effects (2006)

    Google Scholar 

  19. CyberLink: PowerDirector, http://www.cyberlink.com

  20. muvee Technologies: muvee autoProducer, http://www.muvee.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shin’ichi Satoh Frank Nack Minoru Etoh

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peng, WT. et al. (2008). Aesthetics-Based Automatic Home Video Skimming System. In: Satoh, S., Nack, F., Etoh, M. (eds) Advances in Multimedia Modeling. MMM 2008. Lecture Notes in Computer Science, vol 4903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77409-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77409-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77407-5

  • Online ISBN: 978-3-540-77409-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics