[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tolerance Based Templates for Information Systems: Foundations and Perspectives

  • Conference paper
Advances in Hybrid Information Technology (ICHIT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4413))

Included in the following conference series:

Abstract

We discuss generalizations of the basic notion of a template defined over information systems using indiscernibility relation. Generalizations refer to the practical need of operating with more compound descriptors, over both symbolic and numeric attributes, as well as to a more entire extension from equivalence to tolerance relations between objects. We briefly show that the heuristic algorithms known from literature to search for templates in their classical indiscernibility-based form, can be easily adapted to the case of tolerance relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press/The MIT Press, Menlo Park, CA (1996)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Twentieth International Conference on Very Large Data Bases VLDB, pp. 487–499. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  3. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. The AAAI Press/The MIT Press, Cambridge, MA (1996)

    Google Scholar 

  4. Friedman, J.H., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  5. Kloesgen, W., Żytkow, J.: Handbook of Knowledge Discovery and Data Mining. Oxford University Press, Oxford, UK (2002)

    MATH  Google Scholar 

  6. Komorowski, J., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Singapore (1999)

    Google Scholar 

  7. Krawiec, K., Słowiński, R., Vanderpooten, D.: Learning decision rules from similarity based rough approximations. In: Polkowski, Skowron (eds.) [15], pp. 37–54

    Google Scholar 

  8. Nguyen, S.H.: Regularity Analysis and Its Applications in Data Mining. PhD thesis, Warsaw University, Warsaw, Poland (2000)

    Google Scholar 

  9. Nguyen, S.H., Skowron, A., Synak, P.: Rough sets in data mining: Approximate description of decision classes. In: Fourth European Congress on Intelligent Techniques and Soft Computing EUFIT, Aachen, Germany, September 2-5 1996, pp. 149–153. Verlag Mainz (1996)

    Google Scholar 

  10. Nguyen, S.H., Skowron, A., Synak, P.: Discovery of data patterns with applications to decomposition and classification problems (ch. 4). In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Studies in Fuzziness and Soft Computing, ch. 4, vol. 19, pp. 55–97. Physica-Verlag, Heidelberg, Germany (1998)

    Google Scholar 

  11. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. J. Inf. Systems 24(1), 25–46 (1999)

    Article  Google Scholar 

  12. Pawlak, Z.: Information systems - theoretical foundations. Information systems 6, 205–218 (1981)

    Article  MATH  Google Scholar 

  13. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MathSciNet  Google Scholar 

  14. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. D: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht, The Netherlands (1991)

    MATH  Google Scholar 

  15. Polkowski, L., Skowron, A.: Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Studies in Fuzziness and Soft Computing, vol. 19. Physica-Verlag, Heidelberg, Germany (1998)

    MATH  Google Scholar 

  16. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27(2-3), 245–253 (1996)

    MATH  MathSciNet  Google Scholar 

  17. Słowiński, R., Greco, S., Matarazzo, B.: Rough set analysis of preference-ordered data. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 44–59. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Synak, P.: Temporal templates and analysis of time related data. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 420–427. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Synak, P., Ślȩzak, D.: Tolerance based templates for information systems. In: Lee, G., Slezak, D., Kim, T.-h., Sloot, P. (eds.) International Conference on Hybrid Information Technology ICHIT, Cheju, Korea, November 9-11 2006, Science & Engineering Research Support Center (2006)

    Google Scholar 

  20. Wróblewski, J.: Genetic algorithms in decomposition and classification problem. In: Polkowski, Skowron. (ed.) [15], ch. 24, pp. 471–487

    Google Scholar 

  21. Yang, Q., Wu, X.: 10 challenging problems in data mining research. J. Inf. Technology & Decision Making 5(4), 597–604 (2006)

    Article  Google Scholar 

  22. Yao, Y.Y., Wong, S.K.M., Lin, T.Y.: A review of rough set models. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining. Analysis of Imprecise Data, pp. 47–75. Kluwer Academic Publishers, Boston, MA, USA (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marcin S. Szczuka Daniel Howard Dominik Ślȩzak Haeng-kon Kim Tai-hoon Kim Il-seok Ko Geuk Lee Peter M. A. Sloot

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Synak, P., Ślȩzak, D. (2007). Tolerance Based Templates for Information Systems: Foundations and Perspectives. In: Szczuka, M.S., et al. Advances in Hybrid Information Technology. ICHIT 2006. Lecture Notes in Computer Science(), vol 4413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77368-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77368-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77367-2

  • Online ISBN: 978-3-540-77368-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics