Abstract
We discuss generalizations of the basic notion of a template defined over information systems using indiscernibility relation. Generalizations refer to the practical need of operating with more compound descriptors, over both symbolic and numeric attributes, as well as to a more entire extension from equivalence to tolerance relations between objects. We briefly show that the heuristic algorithms known from literature to search for templates in their classical indiscernibility-based form, can be easily adapted to the case of tolerance relations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press/The MIT Press, Menlo Park, CA (1996)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Twentieth International Conference on Very Large Data Bases VLDB, pp. 487–499. Morgan Kaufmann, San Francisco (1994)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. The AAAI Press/The MIT Press, Cambridge, MA (1996)
Friedman, J.H., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)
Kloesgen, W., Żytkow, J.: Handbook of Knowledge Discovery and Data Mining. Oxford University Press, Oxford, UK (2002)
Komorowski, J., Polkowski, L., Skowron, A.: Rough sets: A tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Singapore (1999)
Krawiec, K., Słowiński, R., Vanderpooten, D.: Learning decision rules from similarity based rough approximations. In: Polkowski, Skowron (eds.) [15], pp. 37–54
Nguyen, S.H.: Regularity Analysis and Its Applications in Data Mining. PhD thesis, Warsaw University, Warsaw, Poland (2000)
Nguyen, S.H., Skowron, A., Synak, P.: Rough sets in data mining: Approximate description of decision classes. In: Fourth European Congress on Intelligent Techniques and Soft Computing EUFIT, Aachen, Germany, September 2-5 1996, pp. 149–153. Verlag Mainz (1996)
Nguyen, S.H., Skowron, A., Synak, P.: Discovery of data patterns with applications to decomposition and classification problems (ch. 4). In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Studies in Fuzziness and Soft Computing, ch. 4, vol. 19, pp. 55–97. Physica-Verlag, Heidelberg, Germany (1998)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. J. Inf. Systems 24(1), 25–46 (1999)
Pawlak, Z.: Information systems - theoretical foundations. Information systems 6, 205–218 (1981)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. D: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht, The Netherlands (1991)
Polkowski, L., Skowron, A.: Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Studies in Fuzziness and Soft Computing, vol. 19. Physica-Verlag, Heidelberg, Germany (1998)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27(2-3), 245–253 (1996)
Słowiński, R., Greco, S., Matarazzo, B.: Rough set analysis of preference-ordered data. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 44–59. Springer, Heidelberg (2002)
Synak, P.: Temporal templates and analysis of time related data. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 420–427. Springer, Heidelberg (2001)
Synak, P., Ślȩzak, D.: Tolerance based templates for information systems. In: Lee, G., Slezak, D., Kim, T.-h., Sloot, P. (eds.) International Conference on Hybrid Information Technology ICHIT, Cheju, Korea, November 9-11 2006, Science & Engineering Research Support Center (2006)
Wróblewski, J.: Genetic algorithms in decomposition and classification problem. In: Polkowski, Skowron. (ed.) [15], ch. 24, pp. 471–487
Yang, Q., Wu, X.: 10 challenging problems in data mining research. J. Inf. Technology & Decision Making 5(4), 597–604 (2006)
Yao, Y.Y., Wong, S.K.M., Lin, T.Y.: A review of rough set models. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining. Analysis of Imprecise Data, pp. 47–75. Kluwer Academic Publishers, Boston, MA, USA (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Synak, P., Ślȩzak, D. (2007). Tolerance Based Templates for Information Systems: Foundations and Perspectives. In: Szczuka, M.S., et al. Advances in Hybrid Information Technology. ICHIT 2006. Lecture Notes in Computer Science(), vol 4413. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77368-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-77368-9_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77367-2
Online ISBN: 978-3-540-77368-9
eBook Packages: Computer ScienceComputer Science (R0)