[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Deterministic Model to Infer Gene Networks from Microarray Data

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2007 (IDEAL 2007)

Abstract

Microarray experiments help researches to construct the structure of gene regulatory networks, i.e., networks representing relationships among different genes. Filter and knowledge extraction processes are necessary in order to handle the huge amount of data produced by microarray technologies. We propose regression trees techniques as a method to identify gene networks. Regression trees are a very useful technique to estimate the numerical values for the target outputs. They are very often more precise than linear regression models because they can adjust different linear regressions to separate areas of the search space. In our approach, we generate a single regression tree for each genes from a set of genes, taking as input the remaining genes, to finally build a graph from all the relationships among output and input genes. In this paper, we will simplify the approach by setting an only seed, the gene ARN1, and building the graph around it. The final model might gives some clues to understand the dynamics, the regulation or the topology of the gene network from one (or several) seeds, since it gathers relevant genes with accurate connections. The performance of our approach is experimentally tested on the yeast Saccharomyces cerevisiae dataset (Rosetta compendium).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tavazoie, S., Hughes, J., Campbell, M., Cho, R., Church, G.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)

    Article  Google Scholar 

  2. Silvescu, A., Honavar, V.: Temporal Boolean Network Models of Genetic Networks and Their Inference from Gene Expression Time Series. Complex Systems 13, 54–70 (2001)

    MathSciNet  Google Scholar 

  3. Chen, K., Calzone, L., Csikasz-Nagy, A., Cross, F., Novak, B., Tyson, J.: Integrative Analysis of Cell Cycle Control in Budding Yeast. Molecular Biology of the Cell 15, 3841–3862 (2004)

    Article  Google Scholar 

  4. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. Pacific Symposium on Biocomputing 5, 87 (2000)

    Google Scholar 

  5. Shmulevich, I., Dougherty, E., Zhang, W.: Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics 18, 1319–1331 (2002)

    Article  Google Scholar 

  6. Stuart, J.M., Segal, E., Koller, D., Kim, S.K.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003)

    Article  Google Scholar 

  7. Magwene, P.M., Kim, J.: Estimating genomic coexpression networks using first-order conditional independence. Genome Biol. 5 (2004)

    Google Scholar 

  8. Basso, K., Margolin, A., Stolovitzky, G., Klein, U., Dalla-Favera, R., Califano, A.: Reverse engineering of regulatory networks in human B cells. Nature Genetics 37, 382–390 (2005)

    Article  Google Scholar 

  9. Friedman, N.: Using bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2001)

    Article  Google Scholar 

  10. Quinlan, J.: Learning with continuous classes. In: Procedings Australian Joint Conference on Artificial Intelligence, pp. 343–348 (1992)

    Google Scholar 

  11. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Technical report, Morgan Kaufmann, San Mateo (2000)

    Google Scholar 

  12. Karalic, A.: Linear regression in regression tree leaves. In: Proceedings of the ISSEK 1992, Bled, Slovenia (1992)

    Google Scholar 

  13. Torgo, L.: Functional models for regression tree leaves. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 385–393 (1997)

    Google Scholar 

  14. Torgo, L.: Partial linear trees. In: ICML 2000. Proceedings of the 17th International Conference on Machine Learning, pp. 1007–1014 (2000)

    Google Scholar 

  15. Li, K., Lue, H., Chen, C.: Interactive Tree-Structured Regression Via Principal Hessian Directions. Journal of the American Statistical Association 95 (2000)

    Google Scholar 

  16. Battle, A., Segal, E., Koller, D.: Probabilistic discovery of overlapping cell processes and their regulation. In: RECOMB. Eight Annual International Conference on Research in Computational Molecular Biology, San Diego, CA (2004)

    Google Scholar 

  17. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 34, 166–176 (2003)

    Article  Google Scholar 

  18. Hughes, T., Marton, M., Jones, A., Roberts, C., Stoughton, R., Armour, C., Bennett, H., Coffey, E., Dai, H., He, Y.: Functional Discovery via a Compendium of Expression Profiles. Cell 102, 109–126 (2002)

    Article  Google Scholar 

  19. Fink, G., Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D., Futcher, B.: Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell 9, 3273–3297 (1998)

    Google Scholar 

  20. Peña, J., Bjorkegren, J., Tegner, J.: Discovering statistically significant biclusters in gene expression data. Bioinformatics (in press)

    Google Scholar 

  21. Lesuisse, E., Blaiseau, P., Dancis, A., Camadro, J.: Siderophore uptake and use by the yeast Saccharomyces cerevisiae (2001)

    Google Scholar 

  22. Margolin, A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., Califano, A.: Aracne:an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7, S7 (2006)

    Google Scholar 

  23. Peer, D., Regev, A., Elidan, G., Friedman, N.: Inferring Subnetworks from Perturbed Expression Profiles. Bioinformatics 17, 215–224 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hujun Yin Peter Tino Emilio Corchado Will Byrne Xin Yao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nepomuceno-Chamorro, I., Aguilar–Ruiz, J.S., Díaz–Díaz, N., Rodríguez–Baena, D.S., García, J. (2007). A Deterministic Model to Infer Gene Networks from Microarray Data. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2007. IDEAL 2007. Lecture Notes in Computer Science, vol 4881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77226-2_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77226-2_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77225-5

  • Online ISBN: 978-3-540-77226-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics