[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Improvement of Tardos’s Collusion-Secure Fingerprinting Codes with Very Short Lengths

  • Conference paper
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2007)

Abstract

The code length of Tardos’s collusion-secure fingerprinting code (STOC’03) is of theoretically minimal order with respect to the number of malicious users (pirates); however, the constant factor should be further reduced for practical implementation. In this paper we give a collusion-secure fingerprinting code by mixing recent two improvements of Tardos code and modifying their pirates tracing algorithms. Our code length is significantly shorter than Tardos code, especially in the case of fewer pirates. For example, the ratio of our length relative to Tardos code in some practical situation with 4 pirates is 4.33%; while the lowest among the preceding codes in this case (S̆korić et al., 2007) is 9.87%.

This study has been sponsored by the Ministry of Economy, Trade and Industry, Japan (METI) under contract, New-generation Information Security R&D Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boneh, D., Shaw, J.: Collusion-secure Fingerprinting for Digital Data. IEEE Trans. Inform. Theory 44, 1897–1905 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hagiwara, M., Hanaoka, G., Imai, H.: A Short Random Fingerprinting Code Against a Small Number of Pirates. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 193–202. Springer, Heidelberg (2006)

    Google Scholar 

  3. Isogai, T., Muratani, H.: Reevaluation of Tardos’s Code. In: IEICE Technical Report, ISEC2006-96, pp. 7–12 (2006)

    Google Scholar 

  4. Carter, M., van Brunt, B.: The Lebesgue-Stieltjes Integral: A Practical Introduction. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  5. Katzenbeisser, S., S̆korić, B., Celik, M.U., Sadeghi, A.-R.: Combining Tardos Fingerprinting Codes and Fingercasting. In: IH 2007. LNCS, vol. 4567, Springer, Heidelberg (2007)

    Google Scholar 

  6. Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimal Probabilistic Fingerprinting Codes Using Optimal Finite Random Variables Related to Numerical Quadrature, http://www.arxiv.org/abs/cs/0610036

  7. Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimization of Tardos’s Fingerprinting Codes in a Viewpoint of Memory Amount. In: IH 2007. LNCS, vol. 4567, Springer, Heidelberg (2007)

    Google Scholar 

  8. S̆korić, B., Katzenbeisser, S., Celik, M.U.: Symmetric Tardos Fingerprinting Codes for Arbitrary Alphabet Sizes, http://eprint.iacr.org/2007/041

  9. Tardos, G.: Optimal Probabilistic Fingerprint Codes. J. ACM. In: 2003 ACM Symposium on Theory of Computing, pp. 116–125 (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Serdar Boztaş Hsiao-Feng (Francis) Lu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nuida, K. et al. (2007). An Improvement of Tardos’s Collusion-Secure Fingerprinting Codes with Very Short Lengths. In: Boztaş, S., Lu, HF.(. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2007. Lecture Notes in Computer Science, vol 4851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77224-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77224-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77223-1

  • Online ISBN: 978-3-540-77224-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics