Abstract
The code length of Tardos’s collusion-secure fingerprinting code (STOC’03) is of theoretically minimal order with respect to the number of malicious users (pirates); however, the constant factor should be further reduced for practical implementation. In this paper we give a collusion-secure fingerprinting code by mixing recent two improvements of Tardos code and modifying their pirates tracing algorithms. Our code length is significantly shorter than Tardos code, especially in the case of fewer pirates. For example, the ratio of our length relative to Tardos code in some practical situation with 4 pirates is 4.33%; while the lowest among the preceding codes in this case (S̆korić et al., 2007) is 9.87%.
This study has been sponsored by the Ministry of Economy, Trade and Industry, Japan (METI) under contract, New-generation Information Security R&D Program.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boneh, D., Shaw, J.: Collusion-secure Fingerprinting for Digital Data. IEEE Trans. Inform. Theory 44, 1897–1905 (1998)
Hagiwara, M., Hanaoka, G., Imai, H.: A Short Random Fingerprinting Code Against a Small Number of Pirates. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 193–202. Springer, Heidelberg (2006)
Isogai, T., Muratani, H.: Reevaluation of Tardos’s Code. In: IEICE Technical Report, ISEC2006-96, pp. 7–12 (2006)
Carter, M., van Brunt, B.: The Lebesgue-Stieltjes Integral: A Practical Introduction. Springer, Heidelberg (2000)
Katzenbeisser, S., S̆korić, B., Celik, M.U., Sadeghi, A.-R.: Combining Tardos Fingerprinting Codes and Fingercasting. In: IH 2007. LNCS, vol. 4567, Springer, Heidelberg (2007)
Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimal Probabilistic Fingerprinting Codes Using Optimal Finite Random Variables Related to Numerical Quadrature, http://www.arxiv.org/abs/cs/0610036
Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimization of Tardos’s Fingerprinting Codes in a Viewpoint of Memory Amount. In: IH 2007. LNCS, vol. 4567, Springer, Heidelberg (2007)
S̆korić, B., Katzenbeisser, S., Celik, M.U.: Symmetric Tardos Fingerprinting Codes for Arbitrary Alphabet Sizes, http://eprint.iacr.org/2007/041
Tardos, G.: Optimal Probabilistic Fingerprint Codes. J. ACM. In: 2003 ACM Symposium on Theory of Computing, pp. 116–125 (to appear)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nuida, K. et al. (2007). An Improvement of Tardos’s Collusion-Secure Fingerprinting Codes with Very Short Lengths. In: Boztaş, S., Lu, HF.(. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2007. Lecture Notes in Computer Science, vol 4851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77224-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-77224-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77223-1
Online ISBN: 978-3-540-77224-8
eBook Packages: Computer ScienceComputer Science (R0)