[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Byzantine Consensus with Few Synchronous Links

  • Conference paper
Principles of Distributed Systems (OPODIS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4878))

Included in the following conference series:

Abstract

This paper tackles the consensus problem in asynchronous systems prone to byzantine failures. One way to circumvent the FLP impossibility result consists in adding synchrony assumptions (deterministic solution). In the context of crash failures (at most t processes may crash), the weakest partially synchronous system model assumes at least one correct process with outgoing links that eventually permit a bounded transmission delay with at least t neighbors (the set of neighbors may change over time).

Aguilera et al. provided the main result for systems where at most t processes may exhibit a byzantine behavior. They assume a correct process with all its outgoing and incoming links eventually timely. This paper considers a system model with at least one correct process connected with x privileged neighbors with eventually timely outgoing and incoming links. In this system model, a byzantine consensus protocol is proposed. It uses authentication and assumes x ≥ 2t.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguilera, M.K., Chen, W., Toueg, S.: Heartbeat: a timeout-free failure detector for quiescent reliable communication. In: Mavronicolas, M. (ed.) WDAG 1997. LNCS, vol. 1320, pp. 126–140. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-efficient leader election and consensus with limited link synchrony. In: PODC 2004. Proc. 23nd ACM Symposium on Principles of Distributed Computing, ACM Press, New York (2004)

    Google Scholar 

  3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Consensus with byzantine failures and little system synchrony. In: DSN 2006. Proc. International Conference on Dependable Systems and Networks, Philadelphia (2006)

    Google Scholar 

  4. Basu, A., Charron-Bost, B., Toueg, T.: Crash failures vs. crash + link failures. In: PODC 1996. Proc 15th ACM Symposium on Principles of Distributed Computing, Philadelphia, Pennsylvania (1996)

    Google Scholar 

  5. Ben-Or, M.: Another Advantage of Free Choice: Completely Asynchronous Agreement Protocols. In: PODC 1983. Proc. 2nd ACM Symposium on Principles of Distributed Computing, pp. 27–30. ACM Press, New York (1983)

    Chapter  Google Scholar 

  6. Boichat, B., Dutta, P., Frölund, S., Guerraoui, G.: Deconstructing paxos. SIGACT News in Distributed Computing 34(1), 47–67 (2003)

    Article  Google Scholar 

  7. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proc. of the 3rd Symposium on Operating Systems Design and Implementation, New Orleans, USA (February 1999)

    Google Scholar 

  8. Chandra, T.D., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM 43(2), 225–267 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Correia, M., Neves, N.F., Lung, L.C., Verissimo, P.: Low Complexity Byzantine-Resilient Consensus. Distributed Computing 17, 13 (2004)

    Google Scholar 

  10. Doudou, A., Garbinato, B., Guerraoui, R.: Encapsulating Failure Detection: from Crash to Byzantine Failures. In: Proc. International Conference on Reliable Software Technologies, Vienna (Austria) (2002)

    Google Scholar 

  11. Dutta, P., Guerraoui, R., Vukolic, M.: Best-case complexity of asynchronous byzantine consensus. Technical Report EPFL/IC/200499, EPFL (February 2005)

    Google Scholar 

  12. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial synchrony. Journal of the ACM 35(2), 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  13. Fischer, M.J., Lynch, N., Paterson, M.S.: Impossibility of Distributed Consensus with One Faulty Process. Journal of the ACM 32(2), 374–382 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Friedman, R., Mostefaoui, A., Raynal, M.: Simple and efficient oracle-based consensus protocols for asynchronous byzantine systems. IEEE Transactions on Dependable and Secure Computing 2(1), 46–56 (2005)

    Article  MathSciNet  Google Scholar 

  15. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the Weakest System Model for Implementing Omega and Consensus. Research Report 74/2005, Technische Universität Wien, Institut für Technische Informatik (July 2006)

    Google Scholar 

  16. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Solving Consensus in a Byzantine Environment Using an Unreliable Fault Detector. In: OPODIS 1997. Proc. of the Int. Conference on Principles of Distributed Systems, pp. 61–75 (1997)

    Google Scholar 

  17. Kursawe, K.: Optimistic Byzantine agreement. In: SRDS 2002 Workshops. Proc. of the 21st IEEE Symposium on Reliable Distributed Systems (2002)

    Google Scholar 

  18. Lamport, L.: Lower bounds for asynchronous consensus. Distributed Computing 19(2), 104–125 (2006)

    Article  MathSciNet  Google Scholar 

  19. Malkhi, D., Oprea, F., Zhou, L.: Ω meets paxos: Leader election and stability without eventual timely links. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 26–29. Springer, Heidelberg (2005)

    Google Scholar 

  20. Martin, J.P., Alvisi, L.: Fast Byzantine paxos. In: DSN 2005. Proc. International Conference on Dependable Systems and Networks, Yokohama, Japan, pp. 402–411 (2005)

    Google Scholar 

  21. Pease, L., Shostak, R., Lamport, L.: Reaching Agreement in Presence of Faults. Journal of the ACM 27(2), 228–234 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rabin, M.: Randomized Byzantine Generals. In: FOCS 1983. Proc. 24th IEEE Symposium on Foundations of Computer Science, pp. 403–409. IEEE Computer Society Press, Los Alamitos (1983)

    Google Scholar 

  23. Schneider, F.B.: Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial. ACM Computing Surveys 22(4), 299–319 (1990)

    Article  Google Scholar 

  24. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distributed Computing 2(2), 380–394 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Tovar Philippas Tsigas Hacène Fouchal

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hamouma, M., Mostefaoui, A., Trédan, G. (2007). Byzantine Consensus with Few Synchronous Links. In: Tovar, E., Tsigas, P., Fouchal, H. (eds) Principles of Distributed Systems. OPODIS 2007. Lecture Notes in Computer Science, vol 4878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77096-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77096-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77095-4

  • Online ISBN: 978-3-540-77096-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics