Abstract
We address the issue of segmenting multiple textured objects in presence of a background texture. The proposed technique is based on Geodesic Active Contour (GAC) and can segment multiple textured objects from the textured background. For an input texture image, a texture feature space is created using scalogram obtained from discrete wavelet transform (DWT). Then, a 2-D Riemannian manifold of local features is extracted via the Beltrami framework. The metric of this surface provides a good indicator of texture changes, and therefore, is used in GAC algorithm for texture segmentation. Our main contribution in this work lie in the development of new DWT and scalogram based texture features which have a strong discriminating power to define a good texture edge metric which is used in GAC technique. We validate our technique using a set of synthetic and natural texture images.
Chapter PDF
Similar content being viewed by others
References
Caselles, V., Kimmel, R., Saprio, G.: Geodesic active contours. Int. J. of Computer Vision 22(1), 61–79 (1997)
Sapiro, G.: Color snake. CVIU 68(2), 247–253 (1997)
Clerc, M., Mallat, S.: The texture gradient equations for recovering shape from texture. IEEE Trans. on PAMI 24(4), 536–549 (2002)
Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. on Image Proc. 7(3), 310–318 (1998)
Sagiv, C., Sochen, N.A., Zeevi, Y.Y.: Gabor-space geodesic active contours. In: Sommer, G., Zeevi, Y.Y. (eds.) AFPAC 2000. LNCS, vol. 1888, pp. 309–318. Springer, Heidelberg (2000)
Paragios, N., Deriche, R.: Geodesic active regions for supervised texture segmentation. In: Proc. of ICCV 1999, pp. 926–932 (1999)
Sagiv, C., Sochen, N., Zeevi, Y.: Integrated active contours for texture segmentation. IEEE Trans. on Image Proc. 15(6), 1633–1646 (2006)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. of Computer Vision 1(4), 321–331 (1988)
Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, London (1999)
Prakash, S., Das, S.: External force modeling of snake using DWT for texture object segmentation. In: Proc. of ICAPR 2007, ISI Calcutta, India, pp. 215–219 (2007)
Laws, K.: Textured image segmentation. PhD thesis, Dept. of Elec. Engg., Univ. of Southern California (1980)
Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: Proc. of CVPR 2003, pp. II–699–704 (2003)
Awate, S.P., Tasdizen, T., Whitaker, R.T.: Unsupervised texture segmentation with nonparametric neighborhood statistics. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 494–507. Springer, Heidelberg (2006)
Gupta, L., Das, S.: Texture edge detection using multi-resolution features and self-organizing map. In: Proc. of ICPR 2006 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Prakash, S., Das, S. (2007). Segmenting Multiple Textured Objects Using Geodesic Active Contour and DWT. In: Ghosh, A., De, R.K., Pal, S.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2007. Lecture Notes in Computer Science, vol 4815. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77046-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-77046-6_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77045-9
Online ISBN: 978-3-540-77046-6
eBook Packages: Computer ScienceComputer Science (R0)