Abstract
In this paper, we systematically examine two fundamental questions in information visualization – how to define effective visualization and how to measure it. Through a literature review, we point out that the existing definitions of effectiveness are incomplete and often inconsistent – a problem that has deeply affected the design and evaluation of visualization. There is also a lack of standards for measuring the effectiveness of visualization as well as a lack of standardized procedures. We have identified a set of basic research issues that must be addressed. Finally, we provide a more comprehensive definition of effective visualization and discuss a set of quantitative and qualitative measures. The work presented in this paper contributes to the foundational research of information visualization.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Johnson, C., Moorhead, R., Munzner, T., Pfister, H., Rheingans, P., Yoo, T.S.: NIH/NSF Visualization Research Challenges Report. IEEE Press (2006)
Johnson, C.R.: Top Scientific Visualization Research Problems. IEEE Computer Graphics & Applications 24, 13–17 (2004)
Wijk, J.J.v.: The Value of Visualization. In: Proceedings of IEEE Visualization Conference Minneapolis, MN, IEEE, Los Alamitos (2005)
Dastani, M.: The Role of Visual Perception in DataVisualization. Journal of Visual Languages and Computing 13, 601–622 (2002)
Wattenberg, M., Fisher, D.: Analyzing perceptual organization in information graphics. Information Visualization 3, 123–133 (2004)
Tufte, E.R.: The Visual Display of Quantitative Information, 2nd edn. Graphics Press (2001)
Kosslyn, S.M.: Graphics and Human Information Processing: A Review of Five Books. Journal of the American Statistical Association 80, 499–512 (1985)
Casner, S.M.: A task-analytic approach to the automated design of graphic presentation. ACM Transactions on Graphics 10, 111–151 (1991)
Bertin, J.: Semiology of Graphics: University of Wisconsin Press (1983)
Nowell, L., Schulman, R., Hix, D.: Graphical Encoding for Information Visualization: An Empirical Study. In: Proceedings of the IEEE Symposium on Information Visualization 2002 (InfoVis) (2002)
Amar, R.A., Stasko, J.T.: Knowledge Precepts for Design and Evaluation of Information Visualizations. IEEE Transactions on Visualization and Computer Graphics 11, 432–442 (2005)
Tweedie, L.: Characterizing Interactive Externalizations. In: Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI) (1997)
Cox, R.: Representation construction, externalised cognition and individual differences. Learning and Instruction 9, 343–363 (1999)
Freedman, E.G., Shah, P.: Toward a Model of Knowledge-Based Graph Comprehension. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp. 59–141. Springer, Heidelberg (2002)
Scaife, M., Rogers, Y.: External cognition: how do graphical representations work? International Journal of Human-Computer Studies 45, 185–213 (1996)
Vekiri, I.: What Is the Value of Graphical Displays in Learning? Educational Psychology Review 14, 261–312 (2002)
Lohse, G.L.: The role of working memory on graphical information processing. Behaviour & Information Technology 16, 297–308 (1997)
Marcus, N., Cooper, M., Sweller, J.: Understanding Instructions. Journal of Educational Psychology 88, 49–63 (1996)
Sweller, J.: Visualisation and Instructional Design. In: Proceedings of the International Workshop on Dynamic Visualizations and Learning (2002)
Cleveland, W.S., McGill, R.: Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association 79, 531–554 (1984)
Mackinlay, J.: Automating the Design of Graphical Presentations of Relational Information. ACM Transactions on Graphics 5, 110–141 (1986)
Tversky, B., Agrawala, M., Heiser, J., Lee, P., Hanrahan, P., Phan, D., Stolte, C., Daniel, M.-P.: Cognitive Design Principles for Automated Generation of Visualizations. In: Allen, G.L. (ed.) Applied Spatial Cognition: From Research to Cognitive Technology, Lawrence Erlbaum Associates, Mahwah (2006)
Kosslyn, S.M.: Understanding Charts and Graphs. Applied Cognitive Psychology 3, 185–226 (1989)
Petre, M., Green, T.R.G.: Learning to Read Graphics: Some Evidence that ’Seeing’ an Information Display is an Acquired Skill. Journal of Visual Languages and Computing 4, 55–70 (1993)
Craft, B., Cairns, P.: Beyond guidelines: what can we learn from the visual information seeking mantra? In: Proceedings of the 9th IEEE International Conference on Information Visualization (IV) (2005)
Tory, M., Moller, T.: Evaluating Visualizations: Do Expert Reviews Work? IEEE Computer Graphics and Applications 25, 8–11 (2005)
Chambers, J.M., Cleveland, W.S., Tukey, P.A.: Graphical methods for data analysis. Duxbury Press (1983)
Cleveland, W.S.: Visualizing Data. Hobart Press (1993)
Wilkinson, L.: The Grammar of Graphics, 2nd edn. Springer, Heidelberg (2005)
Senay, H., Ignatius, E.: Rules and Principles of Scientific Data Visualization. In: State of the art in data visualization, SIGGRAPH Course Notes (1990)
Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In: Proceedings of the IEEE Conference on Visual Languages, IEEE, Los Alamitos (1996)
Casner, S.M., Larkin, J.H.: Cognitive Efficiency Considerations for Good Graphic Design. In: Proceedings of the Eleventh Annual Conference of the Cognitive Science Society Ann Arbor, MI (1989)
Lohse, G.L.: A Cognitive Model for Understanding Graphical Perception. Human-Computer Interaction 8, 353–388 (1993)
Cox, R., Brna, P.: Supporting the use of external representation in problem solving: the need for flexible learning environments. Journal of Artificial Intelligence in Education 6, 239–302 (1995)
Saraiya, P., North, C., Duca, K.: An Insight-Based Methodology for Evaluating Bioinformatics Visualizations. IEEE Transactions on Visualization and Computer Graphics 11, 443–456 (2005)
Shneiderman, B., Plaisant, C.: Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies. In: Proceedings of the AVI workshop on Beyond time and errors: novel evaluation methods for information visualization, ACM, New York (2006)
Zhu, Y., Suo, X., Owen, G.S.: Complexity Analysis for Information Visualization Design and Evaluation. In: Proceedings of the 3rd International Symposium on Visual Computing (ISVC). LNCS, vol. 4841, Springer, Heidelberg (2007)
Plaisant, C.:Information Visualization Repository (2007), http://www.cs.umd.edu/hcil/InfovisRepository/
Card, S.K., Mackinlay, J.: The Structure of the Information Visualization Design Space. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis) (1997)
Chi, E.H.: A Taxonomy of Visualization Techniques using the Data State Reference Model. In: Proceeding of IEEE Symposium on Information Visualization (InfoVis) (2000)
Lohse, G.L., Biolsi, K., Walker, N., Rueter, H.H.: A Classification of Visual Representations. Communications of the ACM 37, 36–49 (1995)
Tory, M., Möller, T.: Rethinking Visualization: A High-Level Taxonomy. In: Proceeding of the IEEE Symposium on Information Visualization (InfoVis) (2004)
Wehrend, S., Lewis, C.: A Problem-oriented Classification of Visualization Techniques. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis), IEEE, Los Alamitos (1990)
Senay, H., Ignatius, E.: A Knowledge-Based System for Visualization Design. IEEE Computer Graphics & Applications 14, 36–47 (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhu, Y. (2007). Measuring Effective Data Visualization. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2007. Lecture Notes in Computer Science, vol 4842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76856-2_64
Download citation
DOI: https://doi.org/10.1007/978-3-540-76856-2_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76855-5
Online ISBN: 978-3-540-76856-2
eBook Packages: Computer ScienceComputer Science (R0)