[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Determining Efficient Scan-Patterns for 3-D Object Recognition Using Spin Images

  • Conference paper
Advances in Visual Computing (ISVC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4842))

Included in the following conference series:

Abstract

This paper presents a method to determine efficient scan-patterns for spin images using robust multivariate regression. A large dataset is generated using scan-patterns with random radial scanlines through an oriented point and determining the corresponding classification performance. Eight features are chosen, which are used as predictor variables for a multivariate least trimmed squares regression algorithm, achieving an adjusted coefficient of determination of R 2=0.80. The correlation coefficients are then used in an exemplary cost-benefit function of an exemplary application of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Surmann, H., Lingemann, K., Nüchter, A., Hertzberg, J.: A 3d laser range finder for autonomous mobile robots. In: Proceedings of the 32nd ISR(International Symposium on Robotics), pp. 153–158 (2001)

    Google Scholar 

  2. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 433–449 (1999)

    Article  Google Scholar 

  3. Stein, F., Medioni, G.: Structural indexing: Efficient 3-d object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 125–145 (1992)

    Article  Google Scholar 

  4. Blais, F., Beraldin, J.A., El-Hakim, S.F.: Real-time geometrical tracking and pose estimation using laser triangulation and photogrammetry. In: Proceedings of the 1st International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 205–210 (2001)

    Google Scholar 

  5. Rousseeuw, P.: Least median of squares regression. Journal of the American Statistical Association 79, 871–880 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rousseeuw, P., Leroy, A.: Robust Regression and Outlier Detection. Wiley-IEEE (2003)

    Google Scholar 

  7. Hampel, F.: A general qualitative definition of robustness. Annals of Mathematical Statistics 42, 1887–1896 (1971)

    MathSciNet  Google Scholar 

  8. Bickel, P.: One-step huber estimates in the linear model. Journal of the American Statistical Association 70, 428–434 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  9. Rousseeuw, P., Van Driessen, K.: An Algorithm for Positive-Breakdown Regression Based on Concentration Steps. In: Data Analysis: Scientific Modeling and Practical Application, pp. 335–346. Springer, Heidelberg (2000)

    Google Scholar 

  10. Verboven, S., Hubert, M.: LIBRA: a MATLAB library for robust analysis. Chemometrics and Intelligent Laboratory Systems 75, 127–136 (2005)

    Article  Google Scholar 

  11. Joanes, D.N., Gill, C.A.: Comparing measures of sample skewness and kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician) 47, 183–189 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George Bebis Richard Boyle Bahram Parvin Darko Koracin Nikos Paragios Syeda-Mahmood Tanveer Tao Ju Zicheng Liu Sabine Coquillart Carolina Cruz-Neira Torsten Müller Tom Malzbender

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matzka, S., Petillot, Y.R., Wallace, A.M. (2007). Determining Efficient Scan-Patterns for 3-D Object Recognition Using Spin Images. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2007. Lecture Notes in Computer Science, vol 4842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76856-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76856-2_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76855-5

  • Online ISBN: 978-3-540-76856-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics