[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Prime Implicates for Approximate Reasoning

  • Conference paper
Knowledge Science, Engineering and Management (KSEM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4798))

  • 1281 Accesses

Abstract

Techniques for improving the computational efficiency of inference have held a long fascination in computer science. Two popular methods include approximate logics and knowledge compilation. In this paper we apply the idea of approximate compilation to develop a notion of prime implicates for the family of classically sound, but incomplete, approximate logics S-3. These logics allow for differing levels of approximation by varying membership of a set of propositional atoms. We present a method for computing the prime S-3-implicates of a clausal knowledge base and empirical results on the behaviour of prime S-3-implicates over randomly generated 3-SAT problems. A very important property of S-3-implicates and our algorithm for computing them is that decreasing the level of approximation can be achieved in an incremental manner without re-computing from scratch (Theorem [7]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cadoli, M., Schaerf, M.: Approximate entailment. In: Ardizzone, E., Sorbello, F., Gaglio, S. (eds.) Trends in Artificial Intelligence. LNCS, vol. 549, pp. 68–77. Springer, Heidelberg (1991)

    Google Scholar 

  2. Darwiche, A., Marquis, P.: A knowledge compilation road map. Journal of Artificial Intelligence Research 17, 229–264 (2002)

    MATH  MathSciNet  Google Scholar 

  3. Schrag, R., Crawford, J.M.: Implicates and prime implicates in random 3-SAT. Artificial Intelligence 81(1-2), 199–222 (1996)

    Article  MathSciNet  Google Scholar 

  4. de Kleer, J.: An improved incremental algorithm for generating prime implicates. In: Rosenbloom, P., Szolovits, P. (eds.) Proc. of the Tenth National Conf. on Artificial Intelligence, pp. 780–785. AAAI Press, Stanford (1992)

    Google Scholar 

  5. Cadoli, M.: Tractable Reasoning in Aritificial Intelligence. LNCS, vol. 941. Springer, Heidelberg (1995)

    Google Scholar 

  6. Cadoli, M., Schaerf, M.: On the complexity of entailment in propositional multivalued logics. Annals of Math. and Artificial Intelligence 18(1), 29–50 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Levesque, H.J.: A knowledge-level account of abduction. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, pp. 1061–1067 (1989)

    Google Scholar 

  8. Singh, A.: Logics For Computer Science. Prentice Hall of India, New Delhi (2003)

    Google Scholar 

  9. Tison, P.: Generalization of consensus theory and application to the minimalization of boolean functions. IEEE Trans on Elec Computers EC-16(4), 446–456 (1967)

    Article  MATH  Google Scholar 

  10. Kean, A., Tsiknis, G.K.: An incremental method for generating prime implicants/impicates. Journal of Symbolic Computation 9(2), 185–206 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mitchell, D.G., Selman, B., Levesque, H.J.: Hard and easy distributions for SAT problems. In: Rosenbloom, P., Szolovits, P. (eds.) Proc. of the Tenth National Conf. on Artificial Intelligence, pp. 459–465. AAAI Press, Menlo Park, California (1992)

    Google Scholar 

  12. Koriche, F.: A logic for anytime deduction and anytime compilation. In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI), vol. 1489, pp. 324–341. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Finger, M., Wassermann, R.: Approximate and limited reasoning: Semantics, proof theory, expressivity and control. J. Log. Comput. 14(2), 179–204 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zili Zhang Jörg Siekmann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rajaratnam, D., Pagnucco, M. (2007). Prime Implicates for Approximate Reasoning. In: Zhang, Z., Siekmann, J. (eds) Knowledge Science, Engineering and Management. KSEM 2007. Lecture Notes in Computer Science(), vol 4798. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76719-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76719-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76718-3

  • Online ISBN: 978-3-540-76719-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics