[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Byzantine Self-stabilizing Pulse in a Bounded-Delay Model

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4838))

Included in the following conference series:

Abstract

“Pulse Synchronization” intends to invoke a recurring distributed event at the different nodes, of a distributed system as simultaneously as possible and with a frequency that matches a predetermined regularity. This paper shows how to achieve that goal when the system is facing both transient and permanent (Byzantine) failures.

Byzantine nodes might incessantly try to de-synchronize the correct nodes. Transient failures might throw the system into an arbitrary state in which correct nodes have no common notion what-so-ever, such as time or round numbers, and thus cannot use any aspect of their own local states to infer anything about the states of other correct nodes. The algorithm we present here guarantees that eventually all correct nodes will invoke their pulses within a very short time interval of each other and will do so regularly.

The problem of pulse synchronization was recently solved in a system in which there exists an outside beat system that synchronously signals all nodes at once. In this paper we present a solution for a bounded-delay system. When the system in a steady state, a message sent by a correct node arrives and is processed by all correct nodes within a bounded time, say d time units, where at steady state the number of Byzantine nodes, f, should obey the n > 3f inequality, for a network of n nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  2. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Daliot, A., Dolev, D.: Self-stabilization of byzantine protocols. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, Springer, Heidelberg (2005)

    Google Scholar 

  4. Daliot, A., Dolev, D., Parnas, H.: Linear time byzantine self-stabilizing clock synchronization. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, Springer, Heidelberg (2004), A corrected version appears in http://arxiv.org/abs/cs.DC/0608096

    Google Scholar 

  5. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol resilient to byzantine faults in tree networks. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)

    Google Scholar 

  6. Nesterenko, M., Arora, A.: Local tolerance to unbounded byzantine faults. In: IEEE SRDS 2002, pp. 22–31 (2002), citeseer.ist.psu.edu/nesterenko02local.html

  7. Nesterenko, M., Arora, A.: Dining philosophers that tolerate malicious crashes. In: 22nd Int. Conference on Distributed Computing Systems (2002)

    Google Scholar 

  8. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of byzantine faults. Journal of the ACM 51(5), 780–799 (2004)

    Article  MathSciNet  Google Scholar 

  9. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing byzantine digital clock synchronization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, Springer, Heidelberg (2006)

    Google Scholar 

  10. Daliot, A., Dolev, D.: Self-stabilizing byzantine agreement. In: PODC 2006. Proc. of the Twenty-fifth ACM Symposium on Principles of Distributed Computing, Denver, Colorado (July 2006)

    Google Scholar 

  11. Liskov, B.: Practical use of synchronized clocks in distributed systems. In: Proceedings of 10th ACM Symposium on the Principles of Distributed Computing, ACM Press, New York (1991)

    Google Scholar 

  12. Arora, A., Dolev, S., Gouda, M.G.: Maintaining digital clocks in step. Parallel Processing Letters 1, 11–18 (1991)

    Article  Google Scholar 

  13. Dolev, S.: Possible and impossible self-stabilizing digital clock synchronization in general graphs. Journal of Real-Time Systems 12(1), 95–107 (1997)

    Article  Google Scholar 

  14. Dolev, S., Welch, J.L.: Wait-free clock synchronization. Algorithmica 18(4), 486–511 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Papatriantafilou, M., Tsigas, P.: On self-stabilizing wait-free clock synchronization. Parallel Processing Letters 7(3), 321–328 (1997)

    Article  MathSciNet  Google Scholar 

  16. Herman, T.: Phase clocks for transient fault repair. IEEE Transactions on Parallel and Distributed Systems 11(10), 1048–1057 (2000)

    Article  Google Scholar 

  17. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dolev, D., Hoch, E.N.: On self-stabilizing synchronous actions despite byzantine attacks. In: DISC2007. LNCS, vol. 4731, pp. 193–207. Springer, Heidelberg (2007)

    Google Scholar 

  19. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed consensus problems. Distributed Computing 1, 26–39 (1986)

    Article  MATH  Google Scholar 

  20. Daliot, A., Dolev, D.: Self-stabilizing byzantine pulse synchronization. Technical report, Cornell ArXiv, (August 2005), http://arxiv.org/abs/cs.DC/0608092

  21. Freiling, F.C., Ghosh, S.: Code stabilization. In: Tixeuil, S., Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Toshimitsu Masuzawa Sébastien Tixeuil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dolev, D., Hoch, E.N. (2007). Byzantine Self-stabilizing Pulse in a Bounded-Delay Model. In: Masuzawa, T., Tixeuil, S. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2007. Lecture Notes in Computer Science, vol 4838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76627-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76627-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76626-1

  • Online ISBN: 978-3-540-76627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics