[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Convex Programming Approach to the Trace Quotient Problem

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4844))

Included in the following conference series:

Abstract

The trace quotient problem arises in many applications in pattern classification and computer vision, e.g., manifold learning, low-dimension embedding, etc. The task is to solve a optimization problem involving maximizing the ratio of two traces, i.e., max W Tr(f(W))/Tr(h(W)). This optimization problem itself is non-convex in general, hence it is hard to solve it directly. Conventionally, the trace quotient objective function is replaced by a much simpler quotient trace formula, i.e., \(\max_W {\bf Tr} ({h(W)}^{-1}{f(W)})\), which accommodates a much simpler solution. However, the result is no longer optimal for the original problem setting, and some desirable properties of the original problem are lost.

In this paper we proposed a new formulation for solving the trace quotient problem directly. We reformulate the original non-convex problem such that it can be solved by efficiently solving a sequence of semidefinite feasibility problems. The solution is therefore globally optimal. Besides global optimality, our algorithm naturally generates orthonormal projection matrix. Moreover it relaxes the restriction of linear discriminant analysis that the projection matrix’s rank can only be at most c − 1, where c is the number of classes. Our approach is more flexible. Experiments show the advantages of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yan, S., Tang, X.: Trace quotient problems revisited. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 232–244. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Ye, J., Xiong, T.: Null space versus orthogonal linear discriminant analysis. In: Proc. Int. Conf. Mach. Learn., Pittsburgh, Pennsylvania, pp. 1073–1080 (2006)

    Google Scholar 

  3. Overton, M.L., Womersley, R.S.: On the sum of the largest eigenvalues of a symmetric matrix. SIAM J. Matrix Anal. Appl. 13(1), 41–45 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Overton, M.L., Womersley, R.S.: Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Math. Program 62, 321–357 (1993)

    Article  MathSciNet  Google Scholar 

  5. Borchers, B.: CSDP, a C library for semidefinite programming. Optim. Methods and Software 11, 613–623 (1999)

    Article  MathSciNet  Google Scholar 

  6. Sturm, J.F.: Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones (updated for version 1.05). Optim. Methods and Software 11-12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  7. Xing, E., Ng, A., Jordan, M., Russell, S.: Distance metric learning, with application to clustering with side-information. In: Proc. Adv. Neural Inf. Process. Syst., MIT Press, Cambridge (2002)

    Google Scholar 

  8. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. In: Proc. Adv. Neural Inf. Process. Syst. (2005)

    Google Scholar 

  9. Globerson, A., Roweis, S.: Metric learning by collapsing classes. In: Proc. Adv. Neural Inf. Process. Syst. (2005)

    Google Scholar 

  10. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  11. Simard, P., LeCun, Y., Denker, J.S.: Efficient pattern recognition using a new transformation distance. In: Proc. Adv. Neural Inf. Process. Syst., pp. 50–58. MIT Press, Cambridge (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, C., Li, H., Brooks, M.J. (2007). A Convex Programming Approach to the Trace Quotient Problem. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76390-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76390-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76389-5

  • Online ISBN: 978-3-540-76390-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics