Abstract
The ability to detect and recognize individuals is essential for an autonomous robot interacting with humans even if computational resources are usually rather limited. In general a small user group can be assumed for interaction. The robot has to distinguish between multiple users and further on between known and unknown persons. For solving this problem we propose an approach which integrates detection, recognition and tracking by formulating all tasks as binary classification problems. Because of its efficiency it is well suited for robots or other systems with limited resources but nevertheless demonstrates robustness and comparable results to state-of-the-art approaches. We use a common over-complete representation which is shared by the different modules. By means of the integral data structure an efficient feature computation is performed enabling the usage of this system for real-time applications such as for our autonomous robot Flea.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)
Tan, X., Chen, S., Zhou, Z.H., Zhang, F.: Face recognition from a single image per person: A survey. Pattern Recognition 39(9), 1725–1745 (2006)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4) (2006)
Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision (2002)
Jonsson, K., Kittler, J., Li, Y.P., Matas, J.: Learning support vectors for face verification and recognition. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 208–213. IEEE Computer Society Press, Los Alamitos (2000)
Yang, P., Shan, S., Gao, W., Li, S.: Face recognition using Ada-boosted Gabor features. In: Proceedings Conference on Automatic Face and Gesture Recognition, pp. 356–361 (2004)
Avidan, S.: Ensemble tracking. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 2, pp. 494–501 (2005)
Avidan, S.: Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1064–1072 (2004)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proceedings British Machine Vision Conference, vol. 1, pp. 47–56 (2006)
Ebbecke, M., Ali, M., Dengel, A.: Real time object detection, tracking and classification in monocular image sequences of road traffic scenes. In: Proceedings International Conference on Image Processing, vol. 2, pp. 402–405 (1997)
Hernández, M., Cabrera, J., Dominguez, A., Santana, M.C., Guerra, C., Hernández, D., Isern, J.: Deseo: An active vision system for detection, tracking and recognition, pp. 376–391 (1999)
Arandjelovic, O., Zisserman, A.: Automatic face recognition for film character retrieval in feature-length films. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 1, pp. 860–867 (2005)
Sivic, J., Everingham, M., Zisserman, A.: Person spotting: Video shot retrieval for face sets. In: Proceedings International Conference on Image and Video Retrieval, pp. 226–236 (2005)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition. vol. 1, pp. 511–518 (2001)
Porikli, F.: Integral histogram: A fast way to extract histograms in cartesian spaces. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 1, pp. 829–836 (2005)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Tieu, K., Viola, P.: Boosting image retrieval. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 1, pp. 228–235 (2000)
Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)
Grabner, H., Bischof, H.: On-line boosting and vision. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition. vol. 1, pp. 260–267 (2006)
Oza, N., Russell, S.: Online bagging and boosting. In: Proceedings Artificial Intelligence and Statistics, pp. 105–112 (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grabner, M., Grabner, H., Pehserl, J., Korica-Pehserl, P., Bischof, H. (2007). Flea, Do You Remember Me?. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_62
Download citation
DOI: https://doi.org/10.1007/978-3-540-76386-4_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76385-7
Online ISBN: 978-3-540-76386-4
eBook Packages: Computer ScienceComputer Science (R0)