[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Flea, Do You Remember Me?

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4843))

Included in the following conference series:

  • 3286 Accesses

Abstract

The ability to detect and recognize individuals is essential for an autonomous robot interacting with humans even if computational resources are usually rather limited. In general a small user group can be assumed for interaction. The robot has to distinguish between multiple users and further on between known and unknown persons. For solving this problem we propose an approach which integrates detection, recognition and tracking by formulating all tasks as binary classification problems. Because of its efficiency it is well suited for robots or other systems with limited resources but nevertheless demonstrates robustness and comparable results to state-of-the-art approaches. We use a common over-complete representation which is shared by the different modules. By means of the integral data structure an efficient feature computation is performed enabling the usage of this system for real-time applications such as for our autonomous robot Flea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 34–58 (2002)

    Article  Google Scholar 

  2. Tan, X., Chen, S., Zhou, Z.H., Zhang, F.: Face recognition from a single image per person: A survey. Pattern Recognition 39(9), 1725–1745 (2006)

    Article  MATH  Google Scholar 

  3. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4) (2006)

    Google Scholar 

  4. Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision  (2002)

    Google Scholar 

  5. Jonsson, K., Kittler, J., Li, Y.P., Matas, J.: Learning support vectors for face verification and recognition. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 208–213. IEEE Computer Society Press, Los Alamitos (2000)

    Chapter  Google Scholar 

  6. Yang, P., Shan, S., Gao, W., Li, S.: Face recognition using Ada-boosted Gabor features. In: Proceedings Conference on Automatic Face and Gesture Recognition, pp. 356–361 (2004)

    Google Scholar 

  7. Avidan, S.: Ensemble tracking. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 2, pp. 494–501 (2005)

    Google Scholar 

  8. Avidan, S.: Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1064–1072 (2004)

    Article  Google Scholar 

  9. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proceedings British Machine Vision Conference, vol. 1, pp. 47–56 (2006)

    Google Scholar 

  10. Ebbecke, M., Ali, M., Dengel, A.: Real time object detection, tracking and classification in monocular image sequences of road traffic scenes. In: Proceedings International Conference on Image Processing, vol. 2, pp. 402–405 (1997)

    Google Scholar 

  11. Hernández, M., Cabrera, J., Dominguez, A., Santana, M.C., Guerra, C., Hernández, D., Isern, J.: Deseo: An active vision system for detection, tracking and recognition, pp. 376–391 (1999)

    Google Scholar 

  12. Arandjelovic, O., Zisserman, A.: Automatic face recognition for film character retrieval in feature-length films. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 1, pp. 860–867 (2005)

    Google Scholar 

  13. Sivic, J., Everingham, M., Zisserman, A.: Person spotting: Video shot retrieval for face sets. In: Proceedings International Conference on Image and Video Retrieval, pp. 226–236 (2005)

    Google Scholar 

  14. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition. vol. 1, pp. 511–518 (2001)

    Google Scholar 

  15. Porikli, F.: Integral histogram: A fast way to extract histograms in cartesian spaces. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 1, pp. 829–836 (2005)

    Google Scholar 

  16. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  17. Tieu, K., Viola, P.: Boosting image retrieval. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol. 1, pp. 228–235 (2000)

    Google Scholar 

  18. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition. vol. 1, pp. 260–267 (2006)

    Google Scholar 

  20. Oza, N., Russell, S.: Online bagging and boosting. In: Proceedings Artificial Intelligence and Statistics, pp. 105–112 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grabner, M., Grabner, H., Pehserl, J., Korica-Pehserl, P., Bischof, H. (2007). Flea, Do You Remember Me?. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76386-4_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76385-7

  • Online ISBN: 978-3-540-76386-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics