Abstract
In this paper we present a variational approach to accurately estimate the motion vector field in a image sequence introducing a second order Taylor expansion of the flow in the energy function to be minimized. This feature allows us to simultaneously obtain, in addition, an estimation of the partial derivatives of the motion vector field. The performance of our approach is illustrated with the estimation of the displacement vector field on the well known Yosemite sequence and compared to other techniques from the state of the art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Horn, B., Schunck, B.: Determining optical flow. MIT Aritificial Intelligence Laboratory (1980)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. Seventh International Joint Conference on Artificial Intelligence, Vancouver, pp. 674–679 (1981)
Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pat. Anal. and Mach. Intell. 8, 565–593 (1986)
Aubert, G., Deriche, D., Kornprobst, P.: Computing optical flow via variational techniques. SIAM Journal on Applied Mathematics 60(1), 152–182 (1999)
Mémin, E., Pérez, P.: Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Transactions on Image Processing 7(5) (1998)
Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision 39(1), 41–56 (2000)
Weickert, J., Schnorr, C.: A theoretical framework for convex regularizers in pde-based computation of image motion. Draft, Departament of Mathematics and Computer Science (2000)
Weickert, J., Papenberg, N., Bruhn, A., Brox, T.: High accuracy optical flow estimation based on a theory for warping 4, 25–36 (2004)
Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry. A Practical Guide. Springer, Heidelberg (1998)
Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Computer Journal 7, 149–154 (1964)
Alvarez, L., Castaño, C., García, M., Krissian, K., Mazorra, L., Salgado, A., Sánchez, J.: Symmetric optical flow. In: Proceeding of EuroCast, Las Palmas, Spain (2007)
Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. IJCV 12(1), 43–77 (1994)
Black, M. (2006), http://www.cs.brown.edu/people/black/sequences/yosfaq.html
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alvarez, L. et al. (2007). Second Order Variational Optic Flow Estimation. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2007. EUROCAST 2007. Lecture Notes in Computer Science, vol 4739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75867-9_81
Download citation
DOI: https://doi.org/10.1007/978-3-540-75867-9_81
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75866-2
Online ISBN: 978-3-540-75867-9
eBook Packages: Computer ScienceComputer Science (R0)