[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Second Order Variational Optic Flow Estimation

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2007 (EUROCAST 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4739))

Included in the following conference series:

  • 1010 Accesses

Abstract

In this paper we present a variational approach to accurately estimate the motion vector field in a image sequence introducing a second order Taylor expansion of the flow in the energy function to be minimized. This feature allows us to simultaneously obtain, in addition, an estimation of the partial derivatives of the motion vector field. The performance of our approach is illustrated with the estimation of the displacement vector field on the well known Yosemite sequence and compared to other techniques from the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Horn, B., Schunck, B.: Determining optical flow. MIT Aritificial Intelligence Laboratory (1980)

    Google Scholar 

  2. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. Seventh International Joint Conference on Artificial Intelligence, Vancouver, pp. 674–679 (1981)

    Google Scholar 

  3. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pat. Anal. and Mach. Intell. 8, 565–593 (1986)

    Article  Google Scholar 

  4. Aubert, G., Deriche, D., Kornprobst, P.: Computing optical flow via variational techniques. SIAM Journal on Applied Mathematics 60(1), 152–182 (1999)

    Article  MathSciNet  Google Scholar 

  5. Mémin, E., Pérez, P.: Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Transactions on Image Processing 7(5) (1998)

    Google Scholar 

  6. Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision 39(1), 41–56 (2000)

    Article  MATH  Google Scholar 

  7. Weickert, J., Schnorr, C.: A theoretical framework for convex regularizers in pde-based computation of image motion. Draft, Departament of Mathematics and Computer Science (2000)

    Google Scholar 

  8. Weickert, J., Papenberg, N., Bruhn, A., Brox, T.: High accuracy optical flow estimation based on a theory for warping 4, 25–36 (2004)

    Google Scholar 

  9. Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry. A Practical Guide. Springer, Heidelberg (1998)

    Google Scholar 

  10. Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Computer Journal 7, 149–154 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  11. Alvarez, L., Castaño, C., García, M., Krissian, K., Mazorra, L., Salgado, A., Sánchez, J.: Symmetric optical flow. In: Proceeding of EuroCast, Las Palmas, Spain (2007)

    Google Scholar 

  12. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. IJCV 12(1), 43–77 (1994)

    Article  Google Scholar 

  13. Black, M. (2006), http://www.cs.brown.edu/people/black/sequences/yosfaq.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Moreno Díaz Franz Pichler Alexis Quesada Arencibia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alvarez, L. et al. (2007). Second Order Variational Optic Flow Estimation. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2007. EUROCAST 2007. Lecture Notes in Computer Science, vol 4739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75867-9_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75867-9_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75866-2

  • Online ISBN: 978-3-540-75867-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics