[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

3D Motion Estimation Using a Combination of Correlation and Variational Methods for PIV

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2007 (EUROCAST 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4739))

Included in the following conference series:

Abstract

Estimation of motion has many applications in fluid analysis. Lots of work has been carried out using Particle Image Velocimetry to design experiments which capture and measure the flow motion using 2D images. Recent technological advances allow capturing 3D PIV image sequences of moving particles. In this context, we propose a 3D motion estimation technique based on the combination of an iterative cross-correlation technique and a variational (energy-based) technique. The performance of the proposed technique is measured and illustrated using numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision 39(1), 41–56 (2000)

    Article  MATH  Google Scholar 

  2. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. IJCV 12(1), 43–77 (1994)

    Article  Google Scholar 

  3. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Computing Surveys 27(3), 433–467 (1995)

    Article  Google Scholar 

  4. Corpetti, T., Heitz, D., Arroyo, G., Mémin, E., Santa-Cruz, A.: Fluid experimental flow estimation based on an optical-flow scheme. Experiments in Fluids 40(1), 80–97 (2006)

    Article  Google Scholar 

  5. Horn, B., Schunck, B.: Determining optical flow. MIT Aritificial Intelligence Laboratory (April 1980)

    Google Scholar 

  6. Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry. A Practical Guide. Springer, Heidelberg (1998)

    Google Scholar 

  7. Scarano, F.: Iterative image deformation methods in piv. Measc. Sci. Technol. 13, R1–R19 (2002)

    Article  Google Scholar 

  8. Weicker, J., Schnorr, C.: A theoretical framework for convex regularizers in pde-based computation of image motion. International Journal of Computer Vision 45(3), 245–264 (2001)

    Article  Google Scholar 

  9. White, F.: Viscous Fluid Flow. McGraw-Hill, New York (2006)

    Google Scholar 

  10. Yuan, J., Ruhnau, P., Memin, E., Schnörr, C.: Discrete orthogonal decomposition and variational fluid flow estimation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 267–278. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Moreno Díaz Franz Pichler Alexis Quesada Arencibia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alvarez, L. et al. (2007). 3D Motion Estimation Using a Combination of Correlation and Variational Methods for PIV. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2007. EUROCAST 2007. Lecture Notes in Computer Science, vol 4739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75867-9_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75867-9_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75866-2

  • Online ISBN: 978-3-540-75867-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics