Abstract
Computed tomography (CT) images of the lungs provide high resolution views of the airways. Quantitative measurements such as lumen diameter and wall thickness help diagnose and localize airway diseases, assist in surgical planning, and determine progress of treatment. Automated quantitative analysis of such images is needed due to the number of airways per patient. We present an approach involving dynamic programming coupled with boundary-specific cost functions that is capable of differentiating inner and outer borders. The method allows for precise delineation of the inner lumen and outer wall. The results are demonstrated on synthetic data, evaluated on human datasets compared to human operators, and verified on phantom CT scans to sub-voxel accuracy.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Matsuoka, S., Kurihara, Y., Nakajima, Y., Niimi, H., Ashida, H., Kaneoya, K.: Serial Change in Airway Lumen and Wall Thickness at Thin-Section CT in Asymptomatic Subjects. Radiology (December 2004)
Santago, P., Gage, H.D.: Statistical Models of Partial Volume Effect. IEEE Trans. Img. Proc. pp. 1531–1540 (November 1995)
Reinhardt, J.M., D’Souza, N.D., Hoffman, E.A.: Accurate measurement of intra-thoracic airways. IEEE Trans Med. Imag. 16(6), 820–827 (1997)
Nakano, Y., Muro, S., Sakai, H., Iría, T., Chin, K., Tsukino, M., Nishimura, K., Itoh, H., Pare, P.D., Hogg, J.C., Mishima, M.: Computed Tomographic Measurements of Airway Dimensions and Emphysema in Smokers. J. Respiratory Crit. Care Med. 161, 574–580 (2000)
Kiraly, A.P., Reinhardt, J.M., Hoffman, E.A., et al.: Virtual bronchoscopy for quantitative airway analysis. SPIE Medical Imaging 5746 (2005)
Saba, O., Hoffmann, E.A., Reinhardt, J.M.: Maximizing quantitative accuracy of the lung airway lumen and wall measures obtained from X-ray CT imaging. J. Applied Physiology 95, 1063–1095 (2003)
Estépar, R.S.J., Washko, G.G., Silverman, E.K., Reilly, J.J., Kikinis, R., Westin, C.F.: Accurate Airway Wall Estimation Using Phase Congruency. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, Springer, Heidelberg (2006)
Preteux, F., Fetita, C.I., Grenier, P., Capderou, A.: Modeling, segmentation, and caliber estimation of bronchi in high-resolution computerized tomography. J. Electron. Imag. 8(1), 36–45 (1999)
Mori, K., Suenaga, Y., Toriwaki, J.: Automated anatomical labeling of the bronchial branch and its applications to the virtual bronchoscopy. Med. Imag. 19(2), 103–114 (2000)
Kiraly, A.P., Helferty, J.P, Hoffman, E.A., McLennan, G., Higgins, W.E.: 3D Path Planning for Virtual Bronchoscopy. IEEE Trans. Med. Imag. 23(11) (2004)
Tschirren, J., Hoffman, E.A., McLennan, G., Sonka, M.: Intrathoracic Airway Trees: Segmentation and Airway Morphology Analysis From Low-Dose CT Scans. IEEE Trans. Med. Imag. 24(12) (2005)
Odry, B.L., Kiraly, A.P., Novak, C.L., et al.: Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio. In: Proc. SPIE Medical Imaging 2006, vol. 6143 (2006)
Wiemker, R., Blaffert, T., Bülow, T., Renisch, S., Lorenz, C.: Automated assessment of bronchial lumen, wall thickness and bronchoarterial diameter ratio of the tracheobronchial tree using high-resolution CT. I.C.S. 1268 CARS (2004), pp. 973–977 (2004)
Saragalia, A., Fetita, C.I., Preteux, F.J.: Airway wall thickness assessment: a new functionality in virtual bronchoscopy investigation. SPIE Medical Imaging (2007)
Fleagle, S.R., Johnson, M.R., Wilbricht, C.J., Skorton, D.J., Wilson, R.F., White, C.W., Marcus, M.L., Collins, S.M.: Automated Analysis of Coronary Arterial Morphology in Cineangiograms: Geometric and Physiologic Validation in Humans. IEEE Trans. Med. Imag.8(4) (1989)
Sonka, M., Reddy, G.K., Winniford, M.D., Collins, S.M.: Adaptive Approach to Accurate Analysis of Small-Diameter Vessels in Cineangiograms. IEEE Trans. Med. Imag. 16(1) (1997)
Li, K., Wu, X., Chen, D.Z., Sonka, M.: Efficient Optimal Surface Detection: Theory, Implementation and Experimental Validation. SPIE Medical Imaging (2004)
Moon, T.K., Stirling, W.C.: Mathematical Methods and Algorithms for Signal Processing. Prentice Hall, Inc, Englewood Cliffs (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kiraly, A.P., Odry, B.L., Naidich, D.P., Novak, C.L. (2007). Boundary-Specific Cost Functions for Quantitative Airway Analysis. In: Ayache, N., Ourselin, S., Maeder, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007. MICCAI 2007. Lecture Notes in Computer Science, vol 4791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75757-3_95
Download citation
DOI: https://doi.org/10.1007/978-3-540-75757-3_95
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75756-6
Online ISBN: 978-3-540-75757-3
eBook Packages: Computer ScienceComputer Science (R0)