[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Improved Interval Global Optimization Method and Its Application to Price Management Problem

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4699))

Included in the following conference series:

  • 1687 Accesses

Abstract

We present an interval global optimization algorithm using a modified monotonicity test. The improvement applies to constrained problems and can result in significant speedup, when constraints are sparse, i.e. they “bind” a few of the variables, not all of them. A theorem that ensures the correctness of the new tool, is given and proved. The improved method is applied to an economic problem of setting optimal prices on a couple of products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992)

    Google Scholar 

  2. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  3. Kearfott, R.B.: A Review of Techniques in the Verified Solution of Constrained Global Optimization Problems. In: Kearfott, R.B., Kreinovich, V. (eds.) Applications of Interval Computations, Kluwer, Dordrecht (1996)

    Google Scholar 

  4. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  5. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.: Standardized notation in interval analysis, available at http://www.mat.univie.ac.at/~neum/software/int/notation.ps.gz

  6. Kubica, B.J., Malinowski, K.: An Interval Global Optimization Algorithm Combining Symbolic Rewriting and Componentwise Newton Method Applied to Control a Class of Queueing Systems. Reliable Computing 11(5), 393–411 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Malinowski, K.: PriceStrat 4.0 Initial Research Paper. KSS Internal Document, Manchester (2000)

    Google Scholar 

  8. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  9. Neumaier, A.: Complete Search in Continuous Global Optimization and Constraint Satisfaction. In: Acta Numerica, pp. 271–369. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  10. Simon, H.: Price Management. North-Holland (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bo Kågström Erik Elmroth Jack Dongarra Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubica, B.J., Niewiadomska-Szynkiewicz, E. (2007). An Improved Interval Global Optimization Method and Its Application to Price Management Problem. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2006. Lecture Notes in Computer Science, vol 4699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75755-9_123

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75755-9_123

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75754-2

  • Online ISBN: 978-3-540-75755-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics