[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimizing Neural Network Classifiers with ROOT on a Rocks Linux Cluster

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4699))

Included in the following conference series:

  • 1759 Accesses

Abstract

We present a study to optimize multi-layer perceptron (MLP) classification power with a Rocks Linux cluster [1]. Simulated data from a future high energy physics experiment at the Large Hadron Collider (LHC) is used to teach a neural network to separate the Higgs particle signal from a dominant background [2].

The MLP classifiers have been implemented using the ROOT data analysis framework [3]. Our aim is to reach a stable physics signal recognition for new physics and a well understood background rejection. We report on the physics performance of new neural classifiers developed in this study. We have used the benchmarking capabilities of ROOT and of the Parallel ROOT facility (PROOF) [4] to compare the performance of the Linux clusters at our campus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Heikkinen, A., Lindén, T.: Validation of GEANT4 Bertini cascade nuclide production using parallel Root facility. In: Proc. of Computing in High Energy and Nuclear Physics, February 13–17, 2006, Mumbai, India (in press, 2006)

    Google Scholar 

  2. Heikkinen, A., Lehti, S.: Tagging b jets associated with heavy neutral MSSM Higgs bosons. NIM A 559, 195–198 (2006)

    Article  Google Scholar 

  3. Rademakers, F., Goto, M., Canal, P., Brun, R.: ROOT Status and Future Developments. arXiv: cs.SE/0306078, http://root.cern.ch/

  4. Ganis, G., et al.: PROOF – The Parallel ROOT Facility. In: Proc. of Computing in High Energy and Nuclear Physics 2006, 13 – 17 February 2006, Mumbai, India (In press)

    Google Scholar 

  5. Lehti, S.: Tagging b-Jets in bb H SUSY ττ. CMS NOTE 2001/019

    Google Scholar 

  6. Weiser, C.: A Combined Secondary Vertex Based B-Tagging Algorithm in CMS. CMS NOTE 2006/014

    Google Scholar 

  7. Lehti, S.: Study of MSSM H/A→ττ + X in CMS. CMS NOTE 2006/101

    Google Scholar 

  8. Kinnunen, R., Lehti, S.: Search for the heavy neutral MSSM Higgs bosons with the H/A→τ  +  τ − → electron + jet decay mode. CMS NOTE 2006/075

    Google Scholar 

  9. Sjostrand, T., Lönnblad, L., Mrenna, S.: PYTHIA 6.2 Physics and Manual, hep-ph/010826, LU TP 01/21, 3rd edn. (April 2003)

    Google Scholar 

  10. Lai, H.L., Huston, J., Kuhlmann, S., Morfin, J., Olness, F., Owens, J.F., Pumplin, J., Tung, W.K.: Global QCD Analysis of Parton Structure of the Nucleon: CTEQ5 Parton Distributions, hep-ph/9903282. Eur. Phys. J. C12, 375–392 (2000)

    Article  Google Scholar 

  11. ORCA, Object-oriented Reconstruction for CMS Analysis, http://cmsdoc.cern.ch/orca

  12. CMS Collaboration: Data Acquisition & High-Level Trigger Technical Design Report, CERN/LHCC 2002-26, CMS TDR 6.2 (December 2002)

    Google Scholar 

  13. Chekanov, S.V.: Jet algorithms: A mini review, hep-ph/0211298

    Google Scholar 

  14. Adam, W., Mangano, B., Speer, Th., Todorov, T.: Track reconstruction in the CMS tracker, CMS NOTE 2006/041

    Google Scholar 

  15. Papadopoulos, P., Katz, M., Bruno, G.: NPACI Rocks: Tools and Techniques for Easily Deploying Manageable Linux Clusters. Concurrency Computat: Pract. Exper. 00. 1–20 (2002)

    Google Scholar 

  16. The list of the 500 fastest computers according to the Linpack benchmark, http://www.top500.org/

  17. The homepage of NPACI Rocks cluster distribution, http://www.rocksclusters.org/

  18. Segneri, G., Palla, F.: Lifetime based b-tagging with CMS. CMS NOTE 2002/046

    Google Scholar 

  19. Caballero, I.G., Cano, D., Marco, R., Cuevas, J.: Prototype of a parallel analysis system for CMS using PROOF. In: Proc. of Computing in High Energy and Nuclear Physics, February 13-17, 2006, Mumbai, India (in press)

    Google Scholar 

  20. The Twiki page of PROOF, http://root.cern.ch/twiki/bin/view/ROOT/PROOF

  21. The home page of xrootd, http://xrootd.slac.stanford.edu

  22. Ballintijn, M., Roland, G., Gulbrandsen, K., Brun, R., Rademakers, F., Canal, P.: Super scaling PROOF to very large clusters. In: Proc. of Computing in High Energy and Nuclear Physics 2004, September 27 - October 1, 2004, Interlaken, Switzerland, CERN-2005-002, vol. 1 (2005)

    Google Scholar 

  23. Tentindo-Repond, S., Prosper, H.B., Bhat, P.C.: Neural Networks for Higgs Physics. In: Proceedings of Advanced Computing and Analysis Techniques in Physics Research, VII International Workshop ACAT 2000, Batavia, Illinois (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bo Kågström Erik Elmroth Jack Dongarra Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lindén, T., García, F., Heikkinen, A., Lehti, S. (2007). Optimizing Neural Network Classifiers with ROOT on a Rocks Linux Cluster. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2006. Lecture Notes in Computer Science, vol 4699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75755-9_124

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75755-9_124

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75754-2

  • Online ISBN: 978-3-540-75755-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics