[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Data Dependence Analysis for the Parallelization of Numerical Tree Codes

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4699))

Included in the following conference series:

  • 1696 Accesses

Abstract

Data dependence analysis for automatic parallelization of sequential tree codes is discussed. Hierarchical numerical algorithms often use tree data structures for unbalanced, adaptively and dynamically created trees. Moreover, such codes often do not follow a strict divide and conquer concept, but introduce some geometric neighborhood data dependence in addition to parent-children dependencies. Hence, recognition mechanisms and hierarchical partition strategies of trees are not sufficient for automatic parallelization. Generic tree traversal operators are proposed as a domain specific language. Additional geometric data dependence can be specified by code annotation. A code transformation system with data dependence analysis is implemented, which generates several versions of parallel codes for different programming models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Singh, J.P., Holt, C., Gupta, A., Hennessy, J.L.: A parallel adaptive fast multipole method. In: Proc. 1993 ACM/IEEE conf. Supercomputing, pp. 54–65. ACM, New York (1993)

    Chapter  Google Scholar 

  2. Salmon, J.K., Warren, M.S., Winckelmans, G.S.: Fast parallel tree codes for gravitational and fluid dynamical N-body problems. Int. J. Supercomp. Appl. 8(2), 129–142 (1994)

    Article  Google Scholar 

  3. Caglar, A., Griebel, M., Schweitzer, M.A., Zumbusch, G.: Dynamic load-balancing of hierarchical tree algorithms on a cluster of multiprocessor PCs and on the Cray T3E. In: Meuer, H.W. (ed.) Proc. 14th Supercomp. Conf., Mannheim, Mateo (1999)

    Google Scholar 

  4. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A Dependence-Based Approach. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  5. Hummel, J., Hendren, L.J., Nicolau, A.: A framework for data dependence testing in the presence of pointers. In: Proc. 23rd annual int. conf. parallel processing, pp. 216–224 (1994)

    Google Scholar 

  6. Oldham, J.D.: POOMA. A C++ Toolkit for High-Performance Parallel Scientific Computing. CodeSourcery (2002)

    Google Scholar 

  7. Kuchen, H.: Optimizing sequences of skeleton calls. In: Lengauer, C., Batory, D., Consel, C., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp. 254–273. Springer, Heidelberg (2004)

    Google Scholar 

  8. Herrmann, C., Lengauer, C.: HDC: A higher-order language for divide-and-conquer. Parallel Proc. Let. 10(2/3), 239–250 (2000)

    Article  Google Scholar 

  9. Lengauer, C.: Program optimization in the domain of high-performance parallelism. In: Lengauer, C., Batory, D., Consel, C., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp. 73–91. Springer, Heidelberg (2004)

    Google Scholar 

  10. Ananiev, A.: Algorithm alley: A generic iterator for tree traversal. Dr. Dobb’s J. 25(11), 149–154 (2000)

    Google Scholar 

  11. Beatson, R., Greengard, L.: A short course on fast multipole methods. In: Ainsworth, M., Levesley, J., Light, W., Marletta, M. (eds.) Wavelets, Multilevel Methods and Elliptic PDEs. Numerical Mathematics and Scientific Computation, pp. 1–37. Oxford University Press, Oxford (1997)

    Google Scholar 

  12. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs: Characterization and methodological considerations. In: Proc. 22nd annual int. symp. computer architecture, pp. 24–36. ACM, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bo Kågström Erik Elmroth Jack Dongarra Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zumbusch, G. (2007). Data Dependence Analysis for the Parallelization of Numerical Tree Codes. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2006. Lecture Notes in Computer Science, vol 4699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75755-9_106

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75755-9_106

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75754-2

  • Online ISBN: 978-3-540-75755-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics